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Summary

This report describes the progress made in the first two years (Sept. 1, 1999 to Aug. 31,
2001) of work at The University of Toledo under the NASA Information Technology
(IT) Program grant number NAG-1-2244. This research was aimed at developing a new
and advanced simulation framework that will significantly improve the overall efficiency
of aerospace systems design and development. The project was originally a three-year
project with specific tasks to be completed in each of the three years. However, the
project was funded only for two years and the third year’s funding was thus unavailable
to complete the tasks planned in the original proposal. At the end of each year, a progress
report was sent to the Grant Monitor, Mr. Wayne Gerdes. The reports are reproduced in
Appendix A. The work accomplished under the grant is already described in the progress
reports and accordingly will not be repeated here. Four papers, two journal papers and
two conference papers were published primarily based on the work done on this project.
Three of these publications occurred after the second year report had been submitted;
hence a copy of these papers is provided for completeness in Appendix B. The second
journal paper entitled “On XML-based Integrated Database Model for Multidisciplinary
Aircraft Design” is accepted for publication and is scheduled to appear in AIAA Journal
of Aerospace Computing, Information, and Communication in 2004.
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Summary

This report describes the progress made in the first year (Sept. 1, 1999 to Aug. 31, 2000) of
work at The University of Toledo under the NASA Information Technology (IT) Program
grant number NAG-1-2244. This research is aimed at developing a new and advanced
simulation framework that will significantly improve the overall efficiency of aerospace
systems design and development. This objective will be accomplished through an
innovative integration of object-oriented and Web-based technologies with both new
and proven simulation methodologies. The basic approach involves three major areas of
research:

¢ Aerospace system and component representation using a hierarchical object-oriented
component model which enables the use of multimodels and enforces component
interoperability.

» Collaborative software environment that streamlines the process of developing,
sharing and integrating aerospace design and analysis models.

» Development of a distributed infrastructure which enables Web-based exchange of
models to simplify the collaborative design process, and to support computationally
intensive aerospace design and analysis processes.

Research for the first year dealt with the design of the basic architecture and supporting

infrastructure, an initial implementation of that design, and a demonstration of its
application to an example aircraft engine system simulation.
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Year 1 Accomplishments

Work was begun in several areas during the first year of this three year grant. Major
results are summarized below. A more comprehensive description of the methodology
and initial accomplishments, along with an overall vision statement of our long term
research goals, was published in Ref. 1.

Common Model Framework

An object-oriented domain framework for representing aerospace components. systems
and subsystems has been developed. The framework, which we call the Common Model
Framework (CMF), provides the foundation for the Denali' aerospace simulation
system. The framework formalizes an approach for abstracting aerospace domain
physical structure and mapping it to the computational domain. As shown in Figure 1,
aerospace systems, such as an aircraft, are hierarchically decomposed (Fig. 1b) into
subsystems and components (e.g., fuselage, engines, vertical stabilizer, etc.), which are
then abstracted using a control volume approach (Fig. 1c). The control volumes provide
both a physical geometry representation as well as a convenient mechanism for
mathematical modeling. Each component can be further decomposed to identify more
basic components. The most basic components may be represented in the computational
domain by an object class. Following the Denali CMF architecture, the more basic classes
can be instantiated and the various objects combined to form more complex objects. This
object composition provides a powerful and flexible mechanism for modeling and
simulating aerospace systems, allowing complex aerospace systems to be composed in
the same familiar manner as the physical system.

There are four basic entities in the Denali architecture: Element, Port, Connector and
DomainModel (see Fig. 1d). The Java™ interface Element represents a control volume,
and defines the key behavior for all engineering component classes incorporated into
Denali. It declares the core methods needed to initialize, run and stop model execution, as
well as methods for managing attached Port objects. Classes implementing this interface
generally represent physical components, such as a compressor, turbine blade. or
bearing, to name a few. However, they may also represent purely mathematical
abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This flexibility
permits the component architecture to model a variety of physical systems.

An Element may have zero or more Port objects associated with it. The Port interface
represent a surface on a control volume through which some entity (e.g., mass or energy)
or information passes. Ports are generally classified by the entity being transported
across the control surface. For example, a Compressor object might have two FluidPort
objects—representing the fluid boundaries at the Compressor entrance and exit—and a
StructuralPort object, representing the control surface on the Compressor through
which mechanical energy is passed (from a driving shaft).

1. Not an acronym.
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Figure 1: Mapping of aerospace physical domain to computational framework.
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The common boundary between consecutive control volumes is represented by a
Connector object. The interface Connector permits two Element objects to
communicate by passing information between connected Port objects (see Fig. 1d). Itis
also responsible for data transformation and mapping in situations where the data being
passed from Ports is of different type. The need for such data transformation can range
from simple situations, such as conversion of data units, to very complex ones involving
a mismatch in model fidelity (e.g., connecting a 2-D fluid model to a 3-D fluid model) or
disciplinary coupling (e.g, mapping structural analysis results from a finite-element
mesh to a finite-volume mesh used for aerodynamic analysis). For all but the simplest
cases, the algorithms needed to perform the data transformation or mapping will tend to
be very complex. To improve reusability, Connector delegates transformation/mapping
responsibilities to a separate Transform object (see Fig. 1d) which encapsulates the
necessary intelligence to expand/contract data and map data across disciplines.

The DomainModel represents the mathematical model used to define component
behavior. During component design and analysis, many different models (i.e.,
multimodels) are used. During preliminary design the models are relatively simple and
may be solved analytically or using basic numerical methods. However, models used in
latter phases of design can be quite complicated. In these cases, approximate solutions
are obtained by discretization of the equations on a geometrical mesh and applying
highly specialized numerical solvers. The presence of these complex mathematical
models and the numerical tools needed to solve them suggest that it is desirable to
encapsulate these features and remove them from the Element structure. This enhances
the modularity of Element, allowing new Element classes to be added without regard to
the mathematical model used, and conversely to add new models without affecting the
Element class. To achieve this, Denali utilizes the Strategy design pattern._to encapsulate
the mathematical model in a separate object. The benefit of this pattern is that families of
similar algorithms become interchangeable, allowing the algorithm—in this case the
DomainModel-to vary independently from the Elements that use it. This admits the
possibility of run-time selection of an appropriate DomainModel for a given Element;
however, this is currently not used in Denali. Furthermore, encapsulating the
DomainModel in a separate object also encourages the “wrapping” of pre-existing,
external software packages. For example, the Fan DomainModel in Fig. 1d might “wrap”
a pre-existing three-dimensional Navier-Stokes or Euler flow solver to provide steady-
state aerodynamic analysis of fluid flow within the Fan. This approach allows proven

functionality of existing software analysis packages to be easily integrated within an
Element.

The standard object interfaces of the Denali CMF ensure that each component object
interoperates with other component objects. This is essential for providing a stable
modeling environment which allows complex models to be developed using object
composition and class inheritance. Furthermore, the standard interfaces of the CMF

architecture provide a “pluggable” architecture wherein new components can be added
at runtime.

NAG-1-2244 1st Year Report 4 October 30, 2000



As an example application of the CMF, a model of a the NASA/GE Energy Efficient
Engine (EEE) gas turbine aircraft engine was created. Elements representing the inlet,
fan. compressor, combustor, shafts, turbines, nozzle and ducts in a turbofan engine were
developed. The DomainModel for each Element was developed using a zero-
dimensional mathematical treatment. Furthermore, only an aerothermodynamic
disciplinary analysis was used. At this level of fidelity and discipline, component
behavior was defined by the unsteady, space-averaged forms of the aerothermodynamic
conservation equations. Empirical data, in the form of performance maps, were used to
define operating behavior for rotating components, such as Compressors and Turbines.
The component objects were combined using appropriate zero-dimensional fluid and
mechanical Port and Connector objects. A Newton-Raphson numerical execution
scheme (also provided as part of the Denali system) was used to sole the model
equations and simulate both steady and unsteady engine operation. Results of the tests

were validated against other existing FORTRAN gas turbine engine simulation
programs.

Connection Services Framework

Aerospace design and analysis requires the interaction of many people at different
geographic locations. Even if these individuals are part of the same company, today’s
increasingly international business environment and corporate structures requires us to
assume that the participants may not be at the same location. Moreover, strategic
partnerships between companies (even those competing in the same business domain)
are becoming more common place requiring additional interaction across company
boundaries. As a result, it is important that our simulation framework enable users to
collaborate by sharing models and data in a heterogeneous work environment.

Denali supports the exchange of models through the use of mobile code. Mobile code is
defined as program code which can be transferred from one computer to another and
executed (without recompilation) on the receiving computer. An example of this is the
Java byte-code which is executed on the receiving machine by a Java Virtual Machine
interpreter. Denali utilizes this feature to allow designers to create, compile, verify and
share Java-based component models. Following the design guidelines specified by the
CMEF, aerospace components are created, placed on a Web-server and downloaded to a
Denali client. Once loaded to the client, the model can be combined without additional
programming effort to form a new model.

In aerospace design and analysis, as in many other engineering domains, access to
distributed resources is critical. The computationally intensive nature of higher fidelity
analysis codes (such as Computational Fluid Dynamics) require access to high
performance supercomputers or networks of workstations. Furthermore, the use of
legacy code in aerospace design and analysis often require access to codes that are
constrained to run on specific architectures or operating systems. As a result, it is
important that our simulation framework enable users to access the appropriate
computing resources for the target application.
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The Denali Connection Services Framework (CSF) provides the necessary infrastructure
to enable transparent access to distributed resources using both Web-based exchange of
models, and distributed object service. Web-based models—models written entirely in
Java—are created, compiled, verified, tested and placed on an HTTP web server where
they can be accessed from a Denali client. Non-Java models, such as legacy FORTRAN
software, which are fixed to a particular location due to code size, computing
architecture or proprietary reasons, are placed on remote machines and wrapped by a
Java object. This wrapper defines an interface to the legacy code and acts as a proxy,
enabling the legacy code to be viewed as a local object. As with the \Web-based models,
the Java wrapper for the remote legacy code is placed on a Web server so that it may be
downloaded to the Denali client.

The Denali client, positioned on a user’s workstation or personal computer, locates
available Web-based and remote models by querying one or more well-known naming
or directory service. Using a Component Browser, a user can browse the objects and data
stored in a naming or directory service (see bottom-right corner of Fig. 2). Denali
currently supports access to common naming and directory services. such as NDS,
LDAP, CORBA Naming Service (COS Naming), and RMI Registry. through the Java
Naming and Directory Interface (JNDI). JNDI is an API that provides an abstraction that
represents elements common to the most widely available naming and directory
services. JNDI also allows different services to be linked to together to form a single
logical namespace called a federated naming service. Using the Component Browser,
Denali users are able to navigate across multiple naming and directory services to locate
simulation data, objects and components.

Currently, we mainly use an LDAP (Lightweight Directory Access Protocol) service
which provides both naming (objects are referred by their name) and directory (objects
are stored in hierarchies) access. We utilize the OpenLDAP software, an open-source
implementation of the LDAP protocol, running on a UNIX workstation in our lab.
Rather than storing the model objects in the LDAP service, we chose to store only
attributes of the component. This reduces the need to store and transfer large objects
from the LDAP, and allows models to be located by searching for kevwords
corresponding to certain attributes. For example, for each model component, we define
the class name, the model author, model creation and expiration date. and the URL of
the model code, to name a few. When a component is selected from the LDAP, the Java
byte-codes are downloaded from the Web server defined by the component’s URL
attribute. On the client machine, the byte-codes are dynamically loaded and used to
create an instance of the model.

For security purposes, the Component Browser requires users to authenticate
themselves before they can retrieve any information from a naming or directory service.
Once authentication has been successfully completed, the user can browse or search
(using attribute keywords) the entire namespace (subject to any authorization
restrictions). Authentication and authorization capabilities are provided through JNDI
and the Java Authentication and Authorization Service (JAAS) framework. These tools
allow the Component Browser to remain independent from the underlying security
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services, which is an important concern when working in a heterogeneous computing
environment such as the Web.

Access and utilization of both Web-based and remote legacy models have been tested
successfully using the Denali CSF. Component models for the EEE gas turbine engine
model were placed on a Web server (mimel) located in our lab. Each component model,
with the exception of the Combustor, was defined as a Web-based model (i.e., written in
Java). For this test, a FORTRAN Combustor model, representing non-Java legacy codes,
was written, compiled and placed on a second machine (mime?2). A Java wrapper, acting
as a proxy for the Combustor model, was written, compiled and placed on the Web
server (mimel). Deployment of each component also included registering component
attributes with the LDAP service running on a third machine (mime3). A Denali client,
operating on a fourth machine (mime4), was then used to access and construct the EEE

engine system model using the Denali Visual Assembly Framework, which is described
below.

Visual Assembly Framework

The Visual Assembly Framework (VAF) provides a configurable, extensible graphical
interface for constructing and editing Denali component and system models. Aerospace
component objects, placed on Web servers and registered in the LDAP service are
graphically manipulated in the VAF to create new models, or edit existing models. Icons,
representing individual engine components (i.e., Elements), are selected from the
Component Browser, dragged into a workspace window, and interconnected to form a
schematic diagram (see Fig. 2). Dragging an icon from the Component Browser to the
workspace window causes the selected software component to be downloaded from the
Web server to the client machine. Components comprised entirely of Java classes are
downloaded from a Web server to the local file system where the byte-codes are
extracted from the JAR file, loaded into the Java Virtual Machine and instantiated for use
in Denali. Components developed in other programming languages are not
downloaded, but remain on the server. Instead, the proxy object, representing the
component, is downloaded and used to connect to the remote component using the Java
Remote Method Invocation (RMI) substrate.

Denali supports the creation of hierarchical component models, and an icon can
represent both a single component or an assembly of components. A component with
subcomponents is called a composite or structured component. Components that are not
structured are called primitive components, since they are typically defined in terms of
primitives such as variables and equations. Composite components are represented by a
CompositeElement class, which is part of the Element hierarchy. The class structure,
based on the Composite design pattern, effectively captures the part-whole hierarchical
structure of the component models, and allows the uniform treatment of both individual
objects and compositions of objects. Such treatment is essential for providing the object
interoperability needed to perform Web-based model construction by composition.
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Figure 2 shows a composite model representing an aircraft turbofan engine. The icon
labeled Core is a composite of components which are displayed in the lower schematic.
Each icon has one or more small boxes on its perimeter to represent its Ports. Connecting
lines are drawn between the ports on different icons by dragging the mouse. A
Connector object having the correct Transform object needed to connect the two ports is
created automatically by Denali. Each icon has a popup menu which can be used
“customize” the attributes of its Element, Port and DomainModel objects. When
selected, a graphical Customizer object is displayed (see upper-right corner of Fig. 2),
which can be used to view or edit the selected objects attributes. The visual assembly
interface also provides tools for plotting (see the lower-left corner of Fig. 2), editing files,
and browsing on-line documentation.

Using the VAF interface, the EEE component models were successfully downloaded
from the Web server (mimel),and combined graphically to form an EEE engine model in
the VAF. A Newton-Raphson numerical execution scheme (provided as part of the
Denali system) was used to solve the system of equations and simulate both steady and
unsteady engine operation. Results of the tests were validated against other existing
FORTRAN gas turbine engine simulation programs.

Currently the VAF interface is implemented as a Java application rather than a Java
applet. This was done for two reasons: 1) Java applications are easier to develop than
applets, since they do not require explicit security controls (i.e., signing); and. 2) browser
technology needed to run applets is not up-to-date. Also, a new product. called Java Web
Start is now available (in beta form) which allows users to download Java applications
which run on the desktop, in much the same manner as applets, but do not require a
Web browser. We are currently experimenting with the Java Web Start to evaluate its use
with Denali.

Publications Resulting from Work Supported by This Grant

[1] Reed, ]. A, Follen, G.]., and Afjeh, A. A., “Improving the aircraft design process
using Web-based modeling and simulation, “ACM Transactions on Modeling and
Computer Simulation, Vol. 10, No. 1, 2000, pp. 58-83, (special issue on Web-based
Modeling and Simulation).

Plans for Year 2

Common Model Framework

* The majority of work in year 2 will focus on the addition of geometry data to models.
Specifically, we plan to work on providing direct access to CAD native geometry
data. Our plan is to use a middleware layer being developed at MIT to allow us to
access a variety of CAD packages using a common API. Access to CAD geometry
will allow us to enhance our visualization capabilities.
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¢ We plan to test integration of several database management systems with Denali.
This had been slated for yr. 1, but was postponed until yr. 2 to more fully explore the
use of new approaches to saving models, such as using XML.

¢  We also plan to obtain existing airframe models for study. These will be integrated
within the Denali simulation system in year 3.

Connection Services Framework

¢  We will continue to improve non-mobile code services. Specifically, we are working
on developing generalized specifications for wrapping legacy codes common in the
aerospace domain. These include CFD and FEA tools, as well as numerical solvers
and optimizers.

Visual Assembly Framework

o  We will work on integration of CFD and geometry visualization. We will examine the
possibility of integrating an existing visualization tool, or creating a new Java-based
visualization tool to display geometry and flow data.

o We will continue to enhance and refine our VAF design to make it more intuitive and
easier to use. We hope to provide a beta version of the Denali system to users at
aerospace companies and NASA centers for evaluation. Feedback from these beta
testers will be used to enhance the Denali VAF (and other parts of Denali).
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Figure 2: Denali Visual Assembly interface showing integration of engine model.
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Summary

This report describes the progress made in the second year (Sept. 1, 2000 to Aug. 31, 2001) of work at The
University of Toledo under the NASA Information Technology (IT) Program grant number NAG-1-2244.
This research is aimed at developing a new and advanced simulation framework that will significantly
improve the overall efficiency of aerospace systems design and development. This objective will be
accomplished through an innovative integration of object-oriented and Web-based technologies with both
new and proven simulation methodologies. The basic approach involves three major areas of research:

* Aerospace system and component representation using a hierarchical object-oriented component
model which enables the use of multimodels and enforces component interoperability.

* Collaborative software environment that streamlines the process of developing, sharing and
integrating aerospace design and analysis models.

¢ Development of a distributed infrastructure which enables Web-based exchange of models to simplify
the collaborative design process, and to support computationally intensive aerospace design and
analysis processes.

Research for the second year focused on enabling models developed in the Denali software environment to
directly access CAD native geometry. Access to CAD geometry is essential to generate mesh for use in
fluid and structural analysis of aerospace systems, as well as visualization of analysis results. Furthermore,
a geometry-centric modeling approach, as employed in this work, simplifies use of these and other tools in a
multidisciplinary design process. Finally, direct access to CAD native geometry, compared to geometry
described in intermediate forms (e.g., IGES(!) STEPm, STL[3], etc.), is more robust.
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Year 2 Accomplishments

Introduction

Computational simulation plays an essential role in the aerospace design process. Computer-aided design
(CAD) methods are the basic tool for definition and control of the configuration, and CAD solid modeling
capabilities enable designers to create virtual mockups of system to verify that no :nterferences exist in
part layouts. Similarly, structural analysis is almost entirely performed using comzutational tools
employing finite element methods. Computational simulation is also employed :c model fluid dynamics.
However, computation fluid dvnamic (CFD) tools are not as widely applied in the Zesign process as either
CAD or structural analysis tools due, in part, to the long set-up times and high cos:s (both human and
computational) associated with complex fluid flow.*!

The conventional steps for CFD, structural analysis, and other disciplines in the design process are: 1)
surface generation, 2) mesh generation, 3) obtaining a solution, and 4) post-processing visualization.
Surfaces of the domain to be analyzed (e.g., a turbine blade passage) are generatec from a CAD system.
These surfaces are used to create a domain (i.e., a closed volume) of interest which is discretized in one of
many different manners to form a mesh. The mesh, along with boundary informazion, is used by a
numerical solver to obtain a solution to the governing equations over the entire vc.ume. This solution and
mesh are then displayed graphically, allowing the user to examine the results anc extract the data needed
to understand the domain physics. This process is illustrated in Fig. 1. Data are transmitted between these
steps via files; for example, output from a CAD system might be in the form of IGES file(s), which are read
by the mesh generator. Similarly, the mesh generator, solvers and visualization toois would each generate
output and read input in a variety of formats.

Mesh generation has long been recognized as a bottleneck in the CFD process.>) "W hile much research on
automating the volume mesh generation process have been relatively successful, :hese methods rely on
appropriate initial surface trlanoulatlon to work properly. Surface discretization ~as been one of the least
automated steps in computanonal simulation due to its dependence on implicitl+ defined CAD surfaces
and curves. Differences in CAD geometry engines manifest themselves in discrerzancies in their
interpretation of the same entities. This lack of “good” geometry causes significar.: problems for mesh
generators, requiring users to “repair” the CAD geometry before mesh generatior. The problem is
exacerbated when CAD geometry is translated to other forms (e.g., IGESB which co not include important
topological and construction information in addition to entity geometry.®

One technique to avoid these problems is to access the CAD geometry directly from the mesh generating
software, rather than through files. By accessing the geometry model (not a discretized version) in its
native environment, this a]pproach avoids translation to a format which can deple‘e the model of
topological information.®

Our approach to enable models developed in the Denali software environment to directly access CAD
geometry and functions is through an Application Programming Interface (API) xnown as CAPRL]
CAPRI provides a layer of mdlrectxon through which CAD-specific data may be accessed by an
application program using CAD-system neutral C and FORTRAN language function calls. CAPRI
supports a general set of CAD operations such as truth testing, geometry construction and entity queries.

- - Data transfer via files

CAD 4 » Meshing » Solving » \isualization

Figure 1: Conventional Analysis Process (Ref. [7])
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Figure 2: CAPRI-based Analysis Process (Ref. {7])

CAPRI isolates the top level applications (mesh generators, solvers, and visualization programs) from the
geometry engine (see Fig. 2). It also allows the replacement of one geometry kernel with another, without
affecting the top-level application. Additionally, CAPRI allows non-geometry information, such as
material or condition information (e.g., temperature) to be attached to the geometry entities.

A geometry-centric approach, such as the one supported by CAPRI, is vital to foster concurrent
engineering, especially in multidisciplinary aerospace design. This approach allows requisite information,
both geometric and non-geometric, to be captured and used in the design process. For example, a CFD
solver, using the supplied mesh, would generate a solution consisting of fluid properties (e.z.,
temperature, pressure, etc.) for each volume. This data is attached to appropriate mesh volumes through
CAPR], and accessed by other applications through context-specific views of the CAPRI data. For example,
a CFD visualization application program would obtain the geometry directly (through CAPRI) from the
CAD geometry kernel while the CFD data would be supplied from CAPRI attachments.

Implementation Details: Overview

We have designed and implemented a basic object-oriented architecture to allow both Denz.i models and
external application programs to access geometry data through the CAPRI APL Figure 3 iliustrates a
simplified view of the architecture participants. The designer directs the Client, which is either a Denali
model or external application program, to generate a mesh for a specific CAD part. The MeshGenerator is
responsible for generating an appropriate mesh given a CAD part, and is done in conjunction with the
CAPRI middleware and a CAD geometry kernel (such as UniGraphics Parasolid). The generated mesh is
returned to the Client and passed to the Analysis Controller (it may also be viewed at this time by a
visualization tool). The Analysis Controller uses the mesh to perform an engineering analvsis, such as
CFD. At the end of each time-step or the end of the analysis, CFD data is attached to geometry via calls to
CAPRI. The mesh, attached CFD information, and geometry boundary surfaces data are retrieved by a
Visualizer which displays the simulation results to the designer.

Mesh Generation

A general class structure has been developed to frame the mesh generation process using CAPRI (see Fig.
4). The MeshGeneratorMgr class provides a single access point (implemented as a Singleton object) for
clients to obtain a mesh from a CAD part. There are many different techniques for generating a mesh, so
Denali allows users to specify a particular mesh generation technique as implemented by a Java class.
These different classes can be dynamically plugged into the Denali framework so long as they subclass the
abstract MeshGenerator class. In Fig. 4, the MeshGenerator class has been subclassed by the
DenaliMeshGenerator class, which defines concrete implementations of MeshGenerator abstract methods
(indicated by italics). MeshGenerator subclass’ can use whatever means they wish to generate a mesh; this
allows the use of existing IGES- and STEP-based tools. In our research we have written a simple Java mesh
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Figure 3: Global view of architecture

generator based on constrained Delaunay triangulation. The generator, which is implemented in the
DenaliMeshGenerator class, utilizes CAPRI to access native CAD geometry and generate a mesh. The
Capri class is a Java wrapper which duplicates the CAPRI API function call list and accesses the CAPRI
C-language function calls through the Java Native Interface (JNI).

Using CAPRI, the DenaiMeshGenerator loads a CAD part, then retrieves a list of volumes from CAPRI.
For each volume, CAPRI returns a simplical decomposition of each of the CAD face entities. Each of these
triangulations are manifold with respect to their CAD edges. Typically, the triangulation is irregular and
planar regions are decomposed into as few triangles as possible. A new mesh with higher quality is
constructed by creating additional triangles using points on CAD faces obtained from CAPRI.

Since it was not our intent to write a robust and guaranteed-quality mesh generation tool, we developed
the Delaunay triangulation mesh generator only to the point to demonstrate access to geometry through
CAPRL In the future, we may choose to continue this work and improve upon it using the work of
Ruppert[9], Chew{1% and Aftosmis.[11],

MeshGeneratorMgr MeshGenerator

generator mesh

setGenerator () setMesh ()

getGenerator () getMesh ()

generateMesh ()
DenaliMeshGenerator > Capri
mesh
uStart ()
setMesh() uLoadPar:c ()
getMeshi) dGetVolume ()
generateMesh{) gPointOnFace()
Figure 4: Mesh generation class structure
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Visualization

As indicated above, visualization tools are essential to view solver solutions overlaid on geometry and
mesh data. One visualization tool, called the Geometry Viewer, is a stand-alone visual interface and
debugging aid provided with CAPRL. It is similar to the Visual3 program![!?] used for scientific
visualization, but is limited to viewing meshes and geometry. We have loosely integrated the Geometry
Viewer within the Denali framework so as to demonstrate the ability to visualize geometry and mesh
using the CAPRI library.

Ore of the goals of the Denali framework was to provide a platform-independent system for aerospace
design. Towards that end we have endeavored to use Java™ as much as possible in developing the
framework. However, in some cases, no Java-based tool were available; this is currently the case with
visualization tools. It is sometimes possible to partition the non-Java software into a client-server
architecture with the non-Java software located on a centralized machine made accessible via RMI or
CORBA. However, it appears that this is not currently possible with existing visualization tools.
Consequently we are exploring the possibility of developing a visualization tool similar to Visual3 or the
Geometry Viewer using Java, and in particular, the Java3D APL!3! Alternatively, we will have to require
users to install platform-specific visualization tools on each desktop using Denali in order to view
geometry and/or simulation solutions.

Plans for Year 3

e The majority of work in year 3 will focus on the development of aircraft models for use in Denali. In
anticipation of the year 3 work, we have licensed the Base of Aircraft Data (BADA) from the
Eurocontrol Experimental Centre (EEC). The Base of Aircraft Data (BADA) provides a set of ASCII
files containing performance and operating procedure coefficients for 186 different aircraft types. The
coefficients include those used to calculate thrust, drag and fuel flow and those used to specify
nominal cruise, climb and descent speeds.

e We will continue to work on implementing a database management system based on the Java Data

Objects JDO) specification.[sl The final JDO specification is expected to be released soon, and we will
be evaluating different implementations of the specification to see which is best for supporting Denali.

¢ We will also be working on integrating more robust grid generator and visualization tools which
utilize the CAPRI interface.
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ABSTRACT

Advances in computer capacity and speed together with
increasing demands on efficiency of aircraft design
process have intensified the use of simulation-based
analysis tools to explore design alternatives both at the
component and system levels. High fidelity engineering
simulation, typically needed for aircraft design, will
require extensive computational resources and database
support for the purposes of design optimization as many
disciplines are necessarily involved. Even relatively
simplified models require exchange of large amounts of
data among various disciplinary analyses. Crucial to an
efficient aircraft simulation-based design therefore is a
robust data modeling methodology for both recording
the information and providing data transfer readily and
reliably. To meet this goal, data modeling issues
involved in the aircraft multidisciplinary design are first
analyzed in this study. Next, an XML-based, extensible
data object model for multidisciplinary aircraft design
is constructed and implemented. The implementation of
the model through aircraft databinding ailows the
design applications to access and manipulate any
disciplinary data with a lightweight and easy-to-use
APIL In addition, language independent representation
of aircraft disciplinary data in the model fosters
interoperability amongst heterogeneous systems thereby
facilitating data sharing and exchange between various
design tools and systems.

INTRODUCTION

Improvement in aircraft design involves research
into many distinct disciplines: aerodynamics, structures,
propulsion, noise, controls, and others. Due to the
inherent complexity and coupling of the disciplinary
design issues, simulation-based analyses of aircraft
design will naturally evolve to complex assemblies of
dynamically interacting disciplines where each of the
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disciplines interacts to various degrees with the other
disciplines (Figurel). The multidisciplinary couplings
inherent in aircraft design not only increase
computational burden but also present additional
challenges beyond those encountereé in a single-
disciplinary simulation of aircraft. The increased
computational burden simply reflects the massive size
of the problem, with enormous amounts of analysis data
and design variables adding up with zach additional
discipline. As a result, designing anc :mplementing a

new simulation methodology that supports the
multidisciplinary aircraft design procass can be an
impractically expensive and time-intensive task.

Currently reasonably well-developec and validated
software tools exist within indivicual disciplines.
Hence, a key requirement for the success of a practical
multidisciplinary aircraft simulation iz 0 provide the
tools necessary to support efficient intzzration of these
computer simulation codes. This approzch demands a
well-constructed data  sharing :nd  validation
environment, which includes a robust data modeling
and/or the use of a data exchange stanczard.

erodynami Da<=—znce
Proputsi . Weight I
ropulsion R ?Iq s
Aircraft :
. Design —
Structure & g 1 Stability &
Loads: Controls |

| Materials s
""" l Acoustics I

Figurel. Typical disciplines in an zircraft design

Traditional preliminary design procedures often
decompose the aircraft into isolated components (wing,
fuselage, engine, etc.) and focus attention on the
individual disciplines (geometry. propulsion, acoustics,
etc.). The common approach is to perform disciplinary
analysis in a sequential manner where one discipline
may synthesize the results of the preceding analysis

American Institute of Aeronautics and Astronautics




during the simulation run-time. The current practice
emphasizes the muitidisciplinary nature of the design of
an aircraft through the use of integrated product teams.
However, integrated and sharable aircraft design
databases are not yet common in industry. One reason
for this is because aircraft system simulation typically
requires complex numerical algorithms and coupling
models between dominant disciplines. Accordingly,
developers can barely afford to build propriety data
storage models around successful design applications.
With the distinction, each discipline focuses on
activities related to its own concerns. The designers
typically provide each discipline with only those data
which are required in performing the specific task of
that discipline, and often, they spend 50-80% of their
time organizing data and moving it between
applications [1]. A very common problem with this
kind of data exchange is data consistency. It is not
uncommon to find that during the design phase, a
particular discipline's updated calculations have not
been effectively communicated with other disciplines
involved in the design effort. This breakdown in the
data exchange process results in inconsistent
predictions among the various disciplines and could
cause, for example, an “optimal” aerodynamic design
that can not contain a sufficient supportive structure.
Other factors that can make the design process less
efficient are data redundancy and the lack of a standard
data format. To synthesize and evaluate aircraft designs,
numerous software packages for analysis, post
processing or data visualization are often employed.
Because  the  aircraft  simulation  computing
environments are typically heterogeneous, with
platforms ranging from personal computers to UNIX
workstations, to supercomputers, their internal data
representations are normally not the same, these tools in
general use different, possibly proprietary, data formats.
Moreover, data are often duplicated in a slightly
different format for the various disciplines’ use. This
lack of portability of data in different file systems
greatly hinders sharing and exchanging of
interdisciplinary data. In addition, the multiplicity of
representation of disciplinary datasets not only wastes
storage media capacity and CPU time, but it also
generates an enormous overhead in terms of data
translator development, additional software and data
management. Although in some cases, custom
translation tools are available to “massage” the data into
the appropriate format; users still spend considerable
time and effort tracking and validating data. As the
analysis and design tasks become more distributed,
communications requirements become more severe.
Advances in aircraft disciplinary analyses and the
growing trend in the use of high fidelity models in the
last two decades have only aggravated these problems,
increasing the amount of shared information and
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outpacing developments in interdisciplinary
communications and system design methods [2].

Improving the simulation-based aircraft design
process, therefore, requires the development of an
integrated software environment which can provide
interoperability standards so that information can flow
seamlessly across heterogeneous machines, computing
platforms, programming languages, and data and
process representations [3]. In particular, emphasis
should be placed on the generation of a database
management system specifically crafted to facilitate
multidisciplinary aircraft design. The subject of this
paper is to provide a sharable and interchangeable
database model for multidisciplinary aircraft design,
with the intent to promote the interdisciplinary
information sharing.

DESIGN REQUIREMENTS

The Multidisciplinary  Optimization  Branch
{(MDOB) at NASA Langley Research Center (LaRC)
recently investigated frameworks for supporting
multidisciplinary analysis and optimization research.
The major goals of this program were to develop the
interactions among disciplines and promote sharing of
information. This section outlines several design
requirements related to the data modeling that are
particularly evident in the aircraft multidisciplinary
analysis and optimization, based on the experience
gained from the Framework for Multidisciplinary
Design Optimization (MDO) project [4.3].

1) Standards. Use of standards in a database model
preserves investment, results in lower maintenance
costs and also promotes information sharing. It
ensures that there are no interoperability problems
between design teams that use the open standard.

2) Sharable. Data must be shared between disciplines
and within disciplines with all the applicable
quality, consistency and integrity checks [1].
Information sharing can reduce discipline isolation
and encourage the use of the most advanced
techniques while increasing the awareness of the
effects each discipline has upon other disciplines
and for reduced design cycle time [6].

3) High-level interface. Database model should allow
the user to use and modify aircraft data in complex
MDO problem formulations easily without low-
level programming. By raising the level of
abstraction at which the user programs the MDO
problems, they could be constructed faster and be
less prone to error.

4) Extensible. Advances in aircraft design will have
new disciplines to appear, such as maintainability,
productivity, etc., therefore database model should
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be extensible and should provide support for
developing the interfaces required to integrate new
disciplinary information into the system easily. As
a result, the user would avoid having to wait for the
needed features to appear in new releases.

3) Large data size. Since aircraft design involves a lot
of disciplinary analysis variables, database model
should be able to handle large problem sizes.
Supporting techniques should allow database to
grow and shrink dynamically, but do not degrade
the database performance dramatically.

6) Object-oriented. Database model should be
designed using object-oriented principles. Object-
oriented design [7] has several advantages in
aircraft design. For example, object-oriented
principles provide pol{vmorphism for analysis or
optimization methods at run time. Object-oriented
software design has been employed as a tool in
providing a flexible. extensible, and robust
multidisciplinary toolkit that establishes the
protocol for interfacing optimization with
computationally-intensive simulations {8).

7) Distributed. For large problems, the designers in
different disciplinary teams need to be able to
conveniently work together by collaborative design
[9]. It is desirable that a database model could
support disciplinary code execution distributed
across a network of heterogeneous computers.

The implementation of a database to meet all these
requirements is a major challenge. In the following
sections, we focus on the design and development of a
XML-based database model as a first step toward
meeting that challenge.

XML FOR AIRCRAFT DATA

XML [10] is a generic. robust syntax for developing
specialized markup language. which adds identifiers, or
tags, to certain data so that they may be recognized and
acted upon during future processing. Several good
features inherent within XML would make it well
suited to the task for satisfving multidisciplinary data
requirements.

As indicated in the Design Requirements section,
data sharing is an essential clement in preventing design
isolation between various aircraft  disciplinary
components. XML provides a hierarchical container
that is platform-, language-. and vendor-independent
and separates the content from any environment that
may process it. It is normatively tied to an existing ISO
standard, ISO 8879 (SGML) {11], and is an acceptable
candidate for full use within other ISO standards
without the need for further standardization effort. By
accepting and sending aircraft data in plain text format,
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the requirement to have a standard binary encoding or
storage format is ecliminated, allowing aircraft
applications running on disparate platforms to readily
communicate with each other. Aircraft design
applications written in any other programming language
that process XML can be reused on any tier in a muliti-
tiered client/server environment or distributed
computing, offering an added level of reuse for aircraft
data. The same cannot be said of any previous platform-
specific binary executables. Because XML is or will be
fully supported in Web browsers, it should be possible
to use Web technology to communicate disciplinary
data entities in a collaborative aircraft design
environment.

When using XML. it not only allows input of the
data, but also permits one to define the structural
relationships that exist inside the data. The hierarchical
structure in XML combined with its linking capabilities
[12, 13] can encode a wide variety of aircraft data
structures. The element’s name, attributes and content
model are closely related to data class name, properties
and composition associations in object-oriented aircraft
simulation. By using XML to represent aircraft data, it
is possible to faithfully model any structural aircraft
data of a chosen component in their design context.

In traditional aircraft muludisciplinary analyses,
validating data format and ensuring content correctness
is another major hurdles in achieving data exchanges of
aircraft data. XML also provides facilities for the
syntactic validation of documents against formal rules.
This can be achieved through Document Type
Declaration (DTD) [10] or XML-Schema [14], which
defines the constraints and logical structures that an
XML document should be constructed. A data file
written in XML is considered valid when it follows the
constraints that the DTD or XML-Schema lays out for
the structures of XML data. XML Schema also offers a
number of other significant advantages over DTD, such
as more advanced data types and a very elaborate
content model. Without XML, any validation of aircraft
data has to be implemented at the expense of work by
application developers. When using XML to encode
aircraft design data, XML parser can be used readily to
check the validity and integrity of the aircraft data
stored in XML documents. This guarantees the data
producer and consumer exchange the aircraft design
data correctly.

The various advantages outlined above present
compelling reasons to use XML for aircraft design data
representation. However, the solution is not as easy as it
might at first appear. While XML is a useful technology,
it is, ultimately, simply serialization syntax. In
particular, just putting aircraft data into XML form does
not make it any more interchangeable than it was before,
because the recipient of the data must still have an
understanding of what the design-specific data are
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inside XML file semanticallv in order to process them
correctly. Semantic interoperability s of vital
importance between different aircraft disciplines and
simulation components, as it enables them to agree on
how to use aircraft data and how to interpret application
data for different disciplinary designs. In addition, there
are still several other requirements (for example. large
datasets, object-oriented, high-level interface, etc.) to
meet in order to use XML to communicate aircraft
design data between disciplines efficiently.

In the next section. we will provide the design of an
extensible aircraft data object model. This model will
be used to interpret aircraft design data between design
disciplines, and serve as a foundation to implement a
XML-based aircraft database to meet all the design
requirements.

DATA OBJECT MODEL

The aircraft design process [15] can be divided into
three phases: conceptual design, preliminary design,
and detailed design. Since aircraft design by its nature
is a very complicated process and involves vast
amounts of data, for the purposes of this paper, we will
only demonstrate the data model in the aircraft
conceptual design. Conceptual design involves the
exploration of alternate concepts for satisfying aircraft
design requirements. Trade-off studies between aircraft
conceptual designs are made with system synthesis
tools, which encompass most of aircraft components
and a broad range of disciplinary interactions.

In order to effectively represent aircraft design data
using XML, a set of data object structures was first
designed. Figure 2 shows an overall layout of a
simplified data model. The designed database model is
composed of aircraft components and other disciplinary
data objects (Fig. 2al. The overall model is organized in
a strict hierarchical manner in accordance with the
XML topology. Each node in the data structure shown
here is represented as an Aircraft Data Object (ADO).
These objects hold no complex design logic, but they
contain typed data and preserve the logical structure of
the model. The ADO model precisely defines the
intellectual content of aircraft-related data, including
the organizational structure supporting such data and
the conventions adopted to standardize the data
exchange process. The functional model identifies a
common process in order to ascertain what data are
required for a typical aircraft design process. Figure 2
also indicates (informally) what data, if any, are
encapsulated within each node object.

Aircraft Components
An aircraft component (4C_Component) object can
be an engine, fuselage, landing gear, canard, horizontal
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stabilizer, vertical rudder, or wing (Figure 2b). Every
component has a user-defined name and unique
component type. which characterizes the namre of its
usage. For practical purposes, a component type is
characterized as a set of possible values, such as WING.
ENGINE, etc. There is a special data type. called object
identification (Component ID), whose value is the
unique identifiers of encapsulated objects to be
referenced in the aircraft design.

Each aircraft component itself may be made up of
physically distinguishable subcomponents or parts. For
example, an engine is made up of inlet, fan, compressor,
combustor, turbine and nozzle subcomponents.
Likewise, most landing gears have parts like wheel, tire,
brake assembly, etc. Every subcomponent is
represented by a data object, with member properties
and subtypes (not shown here for simplicity)
encapsulated in it. Each part is modeled as a component
member object and encapsulated as a child in
AC _Component. An important feature to note from
Figure 2b is the local inclusion of several disciplinary
data. Since each member object has its own materials
requirements (e.g., modulus of rigidity, fatigue strength,
etc), structure and loads characteristics (e.g., strain,
stress, displacement, etc), these disciplinary data are
naturally considered as parts of a member object. The
local inclusion of component disciplines prevents
design data isolation, and promotes data sharing and
exchange during the design process. Aircraft propulsion
system (not shown here) is considered as a member
type for the engine components. A more detailed
demonstration for aircraft propulsion model can be
found in Ref. [16].

Besides the hierarchical layer of the data objects
structure, the designed model also encourages the use
of data object abstraction, inheritance, and composition.
Returning to Figure 2b, we can see that each of the
specific aircraft components is pattemned as an “is/a”
relationship with AC_Component. therefore each
specific component data model automatically inherits
all the data member proprieties and subtypes (materials,
structure and load) of its parent. In this sense,
AC _Component provides a data abstraction for all its
component children, allowing each single element to be
treated the same way as the assemblies of elements in
its intermal data representation. For each specific
aircraft component data modeling, we can represent the
hierarchical structure of the data properties,
substructure and their disciplinary data using recursive
composition. For example, we can combine multiple
sets of rotor and stator blade data objects to form a fan
component data. This technique allows us to build
increasingly complex aircraft data components out of
simple data object models. The designed database
model gives us a convenient way to construct and use
arbitrary complex aircraft data model and makes the

American Institute of Aeronautics and Astronautics



GEOMETRY T >

ADO MODEL

AC_COMPONENT

(@) Top level children of ADO model

AC_COMPONENT

CCMPONENT _NAME 1N
CCMPONENT_TYPE
CCMPONENT_D
]
GEAR H. STABILIZER CANARD
WING V. RUDDER ENGINE COM. FUSELAGE

GLOBAL DISCIPLINES

THETA_X_ROTATION
THETA_Y_ROTATION
THETA_Z_ROTATION

AC_MEMBER 1 MATERIALS
© ..T_TENSOR_STRENGTH
NAME ZIMPRESS_YIELD
WEIGHT TOTAL “EINSLE_YELD
SHEAR_PROP_LMT
3~EAR_YELD_STREN
L1 S~EAR_Y ELD_PONT
STRUCTURE _LOAD S~EAR_UTL_STRENGTH
Z_ASTC_MQD
EPS_X_STRAIN WD RG.OTY
EPS_Y_STRAN =AT.GUE_STRENGTH
EPS_Z_STRAN ZZRROSON_RESIST
F_X_FORCE “2ACTURE_TOUGHNESS
F_Y_FORCE $TRESS_NTEN_COEFF
F_Z_FORCE ZRACK_GROWTH_RATE
M_X_MOMENT ~ZMPERATURE
M_Y_MOMENT *-ERMAL_EXPAN_COEFF
M_Z_MOMENT

~-ERM_STRAIN_COEFF

U_X_DEFLECTION
U_Y_DEFLECTION
Y_Z_DEFLECTION
S_X_SHEAR
S_Y_SHEAR
S_Z_SHEAR

(b) Aircraft components data object model

GLOBAL DISCIPLINES

DISCIPLINE_NAME
DISCIPLINE_TYPE

)

|

WEIGHT l

=

l

cost I

I STAB_AND_CONT |

-{ MISSION_WGT I

AERO_LIFT ’

—l FIXED_EQUIP_WGT |

AERO_DRAG ‘]

GRAVITY_INERTIA

FUEL_SYS_WGT

—I STANDARD_COST l

—-| ZERO_COEFF

—[ OPERATION_COST l

—! WIND_BOOY_CNTLj

——4 PROPULSION_COS?I

—-L THRUST_CNTL I

—[ HOURS_RATE ]

'—l GLOBAL _CNTL I

"[cosr_unmsrsnsl

—IﬁGLEATTAC)LSIDESLIP |

(c) GlobalDisciplines data object model

Figure 2. Aircraft data object model

J

American Institute of Aeronautics and Astronautics

ROLL_PITCH_RAW



model totally extensible for future enhancements.

Geometry Modeling

Component geometry modeling is somewhat
unique in aircraft design. All disciplines share the same
geometry. Strong interactions between the disciplines
are very common and complicated. For example. during
operation, the geometry of a flexible structure (eyg..
wing) may change due to the aeroelastic effects.
Geometry modeling must, therefore, be accurate and
suitable for various disciplines (e.g. deflection and
load). For a multidisciplinary optimization problem, the
application must also use a consistent parameterization
across all disciplines. Thus, an application requires a
common geometry dataset that can be manipulated and
shared among various disciplines [17].

STEP Application Protocol 4P 203 —
Configuration Controlled 3D Designs of Mechanical
Parts and Assemblies [18] — is a set of standards that
defines the CAD geometry, topology. and configuration
management data of solid models for mechanical parts.
AP203  supports wireframe. surfaces, solids,
configuration management, and assemblies. The STEP
modelers have undertaken the very difficult job of
defining mappings  between  the  different
representations of the same information. For example, a
curve on the surface of fuselage can be represented as a
B-spline, as a list of curve segments. or as NURBs. In
our aircraft database, a placeholder has been designed
to support various aircraft components’ geometry
disciplinary data that conform to the STEP-based
model. Because different components normally have
very different geometry requirements, the geometry
disciplinary data are considered local to every concrete
component. Different fidelity geometry models can be
chosen for use in the design process.

Global Disciplines

Other disciplinary data, such as stability and
control, aerodynamic, performance. cost, and weight
data, are currently modeled as global objects (and
grouped together as GlobalDisciplines) of the aircraft
database (Figure 2¢). This seems a little unnatural,
however, these calculations have been traditionally
grouped by discipline in aircraft design, and they
probably will continue to be associated in this manner
for some time to come. The relationship between these
disciplinary data and aircraft database is also modeled
as parent to child. For example. one of the relative
important design parameters on the conceptual vehicle
design 1s system performance. This disciplinary
category in our design is currently made up of different
criteria data objects, such as distance, speeds, limits,
measures, etc., as shown in Figure 2c. The figure also
gives the sample data that may be included in the
discipline. New data will be added in as the data object
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model evolves in the future.

SCHEMA DESIGN

Aircraft Schema establishes a bndge between
XML-based description of aircra:t data and the ADO
model. A set of aircraft Scheme nas been designed in
XML Schema language that specifies how the
constituents of the ADO object are mapped to an
underlying XML structure. It associates each piece of
information defined in ADO to a precise location in the
XML structure.

Each aircraft data object defined in ADO is
mapped to one or more nodes. For the most part, the
aircraft Schema closely follows the ADO model.
Aircraft-schema file must be ADO-compliant in order
for other applications to be able 0 properly interpret
aircraft data. This is particularly :mportant when trying
to transfer data between different disciplines and
different storage models. as therz must be agreed-upon
data structure and syntax for cifferent systems to
understand each other. The rules in ADO model will
guarantee that the schema descristion of aircraft data is
syntactically correct and follows the grammar defined
within it. An important feature oZ the ADO data model
is the hierarchical structure, which allows the aircraft
data file to be structured as a rooted directed graph, so it
is necessary to map the directed zraph of aircraft data in
XML onto a tree of aircraft daia objects specified in
ADO. However, when a given piece of information is
listed as being “under” a node. :here are actually two
possibilities: the information can be stored as data in
the current node, or it can be swred as data under a
separate child node. The aircraft schema also
determines which of these two possibilities are best for
each situation.

An example of aircraft schema design is
demonstrated in Figure 3. Based on the ADO model, an
aircraft database model includes several kinds of
component data objects (such as Wing, Fuselage etc.),
which can be contained in an aircraft, and a
GobalDisciplines data object. To create aircraft
component constructs, we start by creating a basic
aircraft component complex type,
AircraftComponent t, which contains a single
AircraftMember element. An z:ircraftMember is
constrained by its complexType 2:rcraftMember t,
where AircraftMember t itself contains Name
TotalWeight, Materials, 2nd 3z=ructureload
elements, and in turn, are constrained by their
corresponding built-in string tpe. double type and
similarly-defined complexTypes separately.

An aircraft component also contains a set of desired
data attributes — componentType. name, identification —
that are encapsulated in the dircraftComponent object.
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="materials.xsd” >
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<xsd:complexType ~ams= AnrcraftComponent ">
<xsd:sequence>

<xsd:element ~zme="AircraftMember” :yce="AircraftMember_t"

maxCccurs="unbounded"™>
</xsd:sequence>
<xsd:attributeGroup -2="ComponentAttributes™/>

</xsd:complexType>

<xsd:attributeGroup ~are="ComponentAttributes™>
<xsd:attribute ~ame="componentType" use="required™
<xsd:simpleType>
<xsd:restriction zas2="xsd:string">
<xsd:enumeration /alue="WING"/>
<xsd:enumeration vaiue="LANDINGGEAR"/>
<l- Sirgr 372737 Vpes are continueg rere—>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute ~are="name" yoe="xsd: stnng _3:="required"/>
<xsg:attribute - 3—a="idetification” *vpe="xsd:ID" .se="required"’>
</xsd:attributeGroup>

<xsd:complexType ~amrs=" AircraftMember _t">
<xsd:sequence>
<xsd:element ~z
<xsd:efement
<xsd.glement

"Name" 'ype="xsd:string” >

"TotaIWeight' ‘ype="xsd:double” />
"Materials” type="Matenals_" />
*oe="StuctureLoad " />

</xsd: complexType>

<xsd:complexType ~ams=

"Wing_t™>
<xsd:complexContent>
<xsd:extension czse="AircraftComponent_t">
<xsd:seguence>

="xsd:string".>
"xsd:strmg"‘>
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<~ tiner woratn data 3
<»’xsd:sequence>
</xsd:extension>
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</xsd:complexType>
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<xsd:complexType>
<xsd:sequence>
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+.ce="GlobalDiscipiines_t"'>

mnCeeurs="2"

3

<rxsd:sequence>
</xsd:compiexType>
</xsd-element>
</xsd:schema>

Figure 3. A sample aircraft schema

These attributes are grouped together, represented by
ComponentAttributes, and referenced by name in
the AircraftComponent’s complexType declaration.
For example, the component Type attribute is restricted
to a set of predefined type values. such as WING,
LANDINGGEAR, etc, these types are constrained by
enumerations definition in the simpleType definition.
Then a set of concrete aircraft components is built
based on the AircraftComponent t complexType.
The technique here is to derive new (complex) aircraft

7

component types by extending an existing type. For
example, when building data schema for the wing
component, we define the content model for Wing
element using new complex types. »inz . in the usual
way, in addition, we indicate that the concrete wing
component (Wing) is extending the
AlrcraftComponent = base type. When a complex
tvpe is derived by extension, its effective content model
is the content model of the base type plus the content
model specified in the type derivation. In the case of
Wwing element, its content model Wi~z < is the content
model of AircraftComponent plus the declarations for
the wing’s local data elements and attributes.

Other aircraft component and disciplinary data
schema can be designed in a similar manner. Finally,
the whole aircraft schema is composed of different
aircraft components and GlobalDisciplines data. Note
that when designing aircraft schema. all the basic
components and disciplinary schemas do not need to be
coded in a single file during the design time. For
example, Figure 3 does not explicitly show the
disciplinary schema such as material. structure and load,
components other than wing, etc. instead. it uses
*include’ element to indicate that these schemas exist
outside the aircraft schema file. In this way, each
schema can be designed separately bv different
disciplinary groups, and then <included™ together
during the run time. This kind of flexible design will
allow for modular development and easv modification
of aircraft schema as its data object model evolves in
the future.

Because of the important nawre of aircraft
geometry disciplinary data, our database model
currently uses STEP AP203 standard to encode all the
aircraft geometry data. STEP models are written using
the EXPRESS language [19]. EXPRESS provides a rich
collection of types and inheritance organizations to
capture data structure and to describe information
requirements and correctness conditions necessary for
meaningful data exchange, therefore makes it easier to
describe an accurate aircraft geometry model. However
EXPRESS does not dictate how the models should be
implemented using various database technologies.
Implementers must convert an EXPRESS information
model into schema definitions for the target database.
This conversion requires a mapping from the
EXPRESS language into the data model of the target
database system. EXPRESS information models
describe logical structures that must be mapped to a
software technology before they can be used.

Given an EXPRESS schema that specifies aircraft
geometry information, it is possible to define a set of
schema languages (such as DTD or XML-Schema) that
are used to encode geometry information specified in
EXPRESS schema. Several researches have been done
to encode EXPRESS schema by DTDs. among which
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the most important one is STEP Part 28 (XML
representation of EXPRESS-driven data) [20], which
includes a set of standard DTD declarations to represent
any EXPRESS schemas in XML as well as dat
corresponding to an EXPRESS schema. Therefore, it is
convenient to take advantage of this standard to encode
all aircraft geometry data. This is done by designing a
STEP CAD Conventer, which can convert from a valid
aircraft geometry STEP model constrained by DTD 1o
XML-Schema. In this way, the general schema design
techniques provided in this section can still be applied
to aircraft geometry data. Moreover, by using XML-
Schema to represent STEP CAD model, it can benefit
the good features in XML-Schema, such as modular
schema inclusion (xinclude), and also offer a uniform
data schema formalism for database implementation. A
simple illustration is given in Figure 4.

<!'—DTD for 3D point-->
<IELEMENT Cartesian_point EMPTY>
<IATTLIST Cartesian_pownt

x-id iD #REQUIRED

X CDATA #REQUIRED

Y CDATA #REQUIRED

Z CDATA #REQUIRED

>

<!—XML Schema for 3D-point after conversion-->
<xsd:schema x~ ~5x5u= hitp:iwww.w3.0rg/2001/XMLSchema >
<xsd:element ~amz="Cartesian_point">
<xsd:complexType>
<xsd:aftribute na~2="X" ype="xsd:string" .se="required"/>
<xsd:attnbute ra—3="2";ce="xsd:string" .s== required”/>
<xsd:attnbute ~a~2 wpe='xsd:string” equired”’>
<xsd:attribute ~2~ 2= x-id" vpe="xsd:ID" .35= required />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 4. Example STEP CAD Converter for 3D point

AIRCRAFT DATABINDING

Multidisciplinary design of aircraft systems is a
complex, computationally intensive process that
combines discipline analyses with intensive data
exchange and decision making. The decision making is
based on the overall design optimization but is greatly
assisted by data sharing and automation [5]. Aircraft
data encoded by XML provides a means to share
disciplinary data between aircraft design teams, but
their physical storage form on the external storage
medium is still not intelligible or easily accessible.
Aircraft databinding provides an implementation for
the designed data object model. Meanwhile, it also
encapsulates a convenient way for conversion between
the aircraft data in XML file and their object
representations  automatically and provides a
lightweight and easy-to-use API, which facilities the
design applications to access, modify and store any
aircraft data object using a high-level object interface.

8

Aircraft Databinding includes two components: an
aircraft schema compiler and a marshalling framework.
It was written in Java: thus the software can be run on
different design platforms.

Schema Compiler

The aircraft schema compiler 1is designed to
automatically translate the aircraft schema into a set of
derived aircraft data class source codes. It maps
instances of aircraft schemas into their data object
models, and then generates a set of classes and types to
represent those models (Figure 3).

+ set(XX()
= GetXXX()
+ marshal()
+ unmarshal()
+ validate()

(O STEPDTD Converter

Figure 5. Schema compiler in Aircraft databinding

Let’s consider how the data class is generated by
schema compiler with input of the schema defined in
previous section. With the “Aircraft” schema defined,
attributes represent simple Java types, usually
primitives. Thus, name and componen:Type attributes in
the dircraftComponent’s complexType are compiled
into Java type of String, and ideniification atiribute
becomes Java primitive of type inr. respectively. All
elements (along with its type information which
specifies the content model), such as Aircraft,
AircraftComponent etc, become Java Classes, which
can then have class instance properties themselves,
again represented by attributes. In this way, a recursion
occurs: an element becomes a new class, and each
property of it is examined. [f the property is an
attribute, a simple Java primitive member variable is
created for the object; if the property is element, a new
data object type is created, added as a member variable,
and the process begins again on the new object type,
until all classes are created. Aill other aircraft
components and disciplinary data can be similarly
created. A Unified Modeling Language (UML) diagram
for generated Java class (only wing component is
shown) is illustrated in Figure 6. The generated classes
also ensure that all the hierarchical data object structure
and their internal relationships are properly maintained.
For example, the figure shows that Wing is a subclass
that extends AircraftComponent, therefore. it inherits all
states and behaviors from its ancestor.

In addition, the generated classes provide methods
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Figure 6. UML for Data class structure generated by aircraft databinding

to access and modify the properties defined in the
aircraft Schema. These methods closely follow the
JavaBean Design Pattern [21]. The main guideline for
the design pattern is that all publicly accessible fields
have proper getter (accessor) and setter (mutator)
methods. For a given field. a getter method is quite
simply a method that returns the value of that field,
while a setter method is one that allows us to set the
value of the field. Each method signature specifies the
name of the operation, which is sufficient for design
tools to obtain information about the fields of data
classes by examining the method signatures of a given
class. This examination process is called Introspection.
For each aircraft data class that is automatically

generated (e.g. AircraftComponent), there is also
included a set of marshal, unmarshal and validate
methods, with their method signatures like:

ciblic booiean vallidate()

public void marshall

public Aircraftlomponent aa

~zrshal (Reader reader)

The validate method is used to check whether the
aircraft data contained in XML file is valid, i.e.
conform to its corresponding data schema; marshal
and unmarshal methods can be used to map directly to
the data of elements and attributes within the XML
document and also affect the underlying aircraft data.
This is achieved through underlying Marshalling
Framework design.

Marshalling Framework

The marshalling framework supports the
transportation (unmarshal) of aircraft data in XML files
into graphs of interrelated instances of aircraft objects

9

that are generated during schema complier and also
converts (marshal) such grapXs back into XML file. For
example, when XML-based wing data is correctly
unmarshaled into aircraft Jz.2 codes. the Wing node in
the XML file becomes an :nstance of the Wing class
that was generated by aircrzit Schema Compiler, i.e.
Wing Data Object. The aircrart design system can then
interfaces those objects. znd all interactions and
manipulations of aircraft disciplinary data in a design
system can be described as :=vocations of operations on
those objects. In particuiar. the aircraft design
application can use the corresponding methods devised
with a set of mutator and accesor methods to work with
the aircraft data in the urderlying design data file.
Therefore, it provides a corvenient way to access and
modify the aircraft data where all underlying files are
transparent to the user. The end result is aircraft data
binding.

Distributed Access

As the argument in ~zz:=al is a general “writer”
object, it can be piped to or wrapped into many other
different writers or streams. such as a network
connection, or another program. This means marshaling
can be done remotely from zircraft disciplinary design
team servers (Figure 7). The same applies to
unmarshaling process where a general “Reader” is used.
A set of sample disciplinary drivers have been written
that use HTTP socket connection, Java Servlet,
CORBA, RMI technology 1o allow the databinding to
be called from different client working environments.
These discipline drivers can serve as a ‘plug-in’ for
aircraft disciplinary simulation codes and enables them
to use XML-based aircrait data easily and remotely.
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Figure 7. Design teams use Marshal Framework to access aircraft data remotely

According to the design requirements, more than one
discipline data may need to be called by a driver. The
interfaces between the discipline codes and their drivers
must be accurately specified in order to provide proper
communications. The disciplinary drivers can also
serve as templates or examples for more complex
problems.

Dynamically Schema Add-in

With advances in aircraft design process, there has
been an increased realization that new disciplines, such
as maintainability. productivity, etc., should be
addressed in order to optimize the aircraft design
process. Aircraft databinding also provides a service
that can dynamically add-in new aircraft disciplinary
schemas. These schemas can be either in XML-schema
format or in DTD format, but they must conform to a
set of newly designed disciplinary data object models.
STEPConverter is an example. of this service that
provides a set of tools and libraries to read and write
STEP Part28 compatible DTD file and to be used for
aircraft geometry modeling (Figure 5). By using add-in
support to aircraft disciplinary schema, the databinding
code itself is kept generic and does not need any special
coding for a new problem.

Performance

Since XML description of aircraft data are by their
nature potentially large in size, in order to improve
aircraft  database performance, the databinding
internally integrates another service, through XInclude
[12] and XLink {13]. that further allows users to split an
arbitrary large aircraft data file into a sequence of
sufficiently small subfiles during the marshailing
process, and resemble all these pieces together when
unmarshaling XML-based aircraft data to their data
objects. This kind of flexibility allows an aircraft data
file to span multiple physical files reside in different
computers by referencing as URI, and also make
possible a portion of one aircraft data file to be
referenced by several other aircraft files. The individual
files are more portable due to their reduced size, and
make use of less memory to represent the whole
necessary layered tree of the aircraft data nodes. In
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addition, a ZipArchiver is included in the aircraft
databinding, which will compress the aircraft data in
XML subfiles into different Zip entities in an aircraft
archive when transferring aircraft data objects to data
files. By using text compression algorithms, the XML
data file size can be much smaller than the original size
and even smaller in size than binary representation of
the same data. This reduces file I/O access times and
improves performance required for large aircraft
dataset.

CONCLUSION

In this work. a XML-based database model for use
in multidisciplinary aircraft design has been designed,
which meets design requirements of diverse disciplines.
The database consists of data object models, database
schemas. and data binding. Aircraft Data Object (ADO)
model encompasses most of common components
involved in multidisciplinary aircraft design, as well as
various pertinent disciplines, such as aerodynamics,
structures, cost, materials, performance, stability and
control and weights. STEP AP203 standard is used to
describe each component’s geometry data. The ADO
model precisely defines the organizational structure
supporting aircraft design data and the conventions
adopted to standardize the data exchange. This is
particularly important when trying to transfer data
between different disciplines and different storage
models. as there must be agreed-upon data structure and
syntax for different systems to understand each other.

In order to store and validate XML-based aircraft
data, a set of database schemas was designed based on
ADO model. By using XML Schema to represent
aircraft Schema, a set of constraints establishes how
domain-specific data should be constructed, which can
then be used to further schema-validate the aircraft
data, ensuring that the contained data are valid. The
database schema follows a modular design pattern such
that it is extensible for future addition and/or
modification. By using and developing focused aircraft
disciplinary schema for specific aircraft component
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object types, users can Ssenefit by an increase in
application reusability.

The aircraft databinding provides an object interface
to various aircraft disciplines, allowing automated
storage and retrieval of XML-based aircraft design
results within and across disciplines. Most of the data
manipulation services are transparent to the aircraft
designer and simulation codes. This higher level
database development with automation support
provides a common working environment, which would
enhance the productivity of multidisciplinary projects.

Since all disciplinary data in the binding process
are stored in XML documents, they bypass the
requirement to have a standard binary encoding or
storage format. Additionally, the language independent
representation  of various aircraft component and
disciplinary data can foster interoperability amongst
heterogeneous systems, ard thereby greatly facilitates
the multidisciplinary aircrart design.
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INTERACTIVE, SECURE WEB-ENABLED AIRCRAFT ENGINE
SIMULATION USING XML DATABINDING INTEGRATION

Risheng Lin" and Abdollah A. Afjeh”
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ABSTRACT

This paper discusses the detailed design of an XML
databinding framework for aircraft engine simulation.
The framework provides an object interface to access
and use engine data, while at the same time preserving
the meaning of the original data. The Language
independent representation of engine component data
enables users to move around XML data using HTTP
through disparate networks. The application of this
framework is demonstrated via a web-based turbofan
propulsion system simulation using the World Wide
Web (WWW). A Java Servlet based web component
architecture is used for rendering XML engine data into
HTML format and dealing with input events from the
user, which allows users to interact with simulation data
from a web browser. The simulation data can also be
saved to a local disk for archiving or to restart the
simulation at a later time.

INTRODUCTION

Computer programs capable of simulating the
operation of aircraft engines are useful tools that can
help reduce the time, cost and risk of product design
and development and facilitate learning about the
complex interactions between jet engine components.
However, the strongly-coupled nature of the
components’ flow physics and the large number of
operating and design parameters needed for simulation
of the aircraft engine system present a challenge to
developers who aim at designing an easy-to-use and
effective engine simulation program for users. Most of
the aircraft engine simulation software currently
available have limitations primarily in the presentation
of the simulation input and output data, due to the use
of text-based interfaces, and the lack of data validation
methods. As a result, engine simulation results could be
overwhelming and difficult to interpret without a
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significant effort. Moreover, traditional simulation data
are, in general, stored in proprietary data formats and
constrained by hardware and operating svstem platform
differences. Thus, developers are hindered in their
efforts to synthesize simulation data in their design
uniess a clearly defined and interoperable data interface
exists. The bottlenecks caused by data handling,
heterogeneous computing environments and
geographically separated design teams. continue to
restrict the use of these tools [1].

Web-based simulation, due to its accessibility,
convenience and emphasis on  collaborative
composition of simulation models. distributed

heterogeneous execution, and dvnamic multimedia
documentation, has the potential to funcamentally alter
the practice of simulation [2]. Presently. the majority of
work in web-based simulation has centered on re-
tmplementation of existing distributed 2nd standalone
simulation logics within Java Applets 3.4]. Applets are
quite popular because they are supported by common
browsers and are safe to execute on cilent computers.
However. with the whole simulation ccdz righthy-bound
to an Applet, it may take a long time for the rich engine
simulation code to load within a cliert’s browser. In
addition, it is often not efficient to execute complicated
simulation logic at the client side. where a high
performance computer is generallv not available.
Applets’ security model, arguably one of its strengths,
also creates obstacles for post-processing of simulation
data beyond what applets provide since it inhibits
creation of data files on the host machine.

This paper describes a web-based aircraft engine
simulation system, called X-Jgrs, through dynamic
XML databinding framework which permits data
communication with ease. XML [3]. due to its
structured, platform and language independent, highly
extensible and web-enabled nature. has rapidly become
an emerging standard to represent data between diverse
applications. XML can represent both structured and
unstructured data, along with its rich descriptive
delimiters. By using XML to represent engine data in
high performance propulsion system simulation, it is
possible to faithfully model the structural elements of a
chosen component in an interoperable fashion that is
natural in their simulation context. Since HTTP (Hyper
Text Transfer Protocol) already supports transmission
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of plain text, XML data can be moved around readily
using the HTTP through firewalls and disparate
networks. Engine databinding through XML also
provides simulation designers with a higher and more
user-friendly API to work with underlying engine
components repository and thus enables the
components to communicate with each other effectively.

ENGINE MODELS

This section provides an overview of engine analysis
model that is used in our web-based simulation. Also
presented is the designed engine data object model that
will be used in engine databinding framework.

Analysis Model

The mathematical model used to describe the
operation of the gas turbine system in the current work
is pattermed after that presented in [6]. Here, the gas
turbine system is decomposed into its individual basic
components: inlet, compressor, combustor, turbine,
nozzle, bleed duct connecting duct, and connecting
shaft. Intercomponent mixing volumes are used to
connect two successive components as well as define
temperature and pressure at component boundaries.
Operation of each of the components is described by
the equations of aero-thermodynamics which are space-
averaged to provide a lumped parameter model for each
component. For dynamic (transient) gas turbine
operation, the model includes the unsteady equations
for fluild momentum in connecting ducts, inertia in
rotating shafts, and mass and energy storage in
intercomponent mixing volumes. A  complete
description of the model can be found in [7].

Data Object Model

Based on the above engine analysis model, an
“Engine Data Object” (EDO) model was designed to
precisely define the intellectual content of engine
component data, including a complete definition of
engine data entities, attributes, relationships, and
specification of local and global constraints on these
entities.

In order to effectively represent simulation data
using XML, the engine system, shown in Figure 1(a),
was first decomposed into individual basic components
in a strict hierarchical manner in accordance with the
XML topology. A set of data structures is then built in
parallel with each engine component. An overall layout
of a simplified data model is summarized in Figure 1(b).
Each node in the model shown here is represented as an
engine data object. The figure also indicates (informally)
what data, if any, are encapsulated within each node
object. For example, the Nozzle data object shown in
Figure 1(c) gives information about a particular
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converging-diverging or converging-only nozzle in an
engine simulation. The user-defined parameters of a
nozzle include a set of nozzle design point data and
nozzle initial operating data, such as mass tlow rate,
throat area, exit area, gross thrust. etc. Consequently,
these data are designed as subchildren data objects in
Nozzle. In addition, the nozzle throat and exit areas may
be adjusted during the transient by a user-defined
schedule; ThroatdAreaTransientControllers and
ExitdAreaTransientControllers are designed for this

T T T T

(a)

ControlVolumn

Components Premixer

Nixing¥olEntity
— —_—
Source NonSource GasCynamicEmyy  Mechania MixingVol
! )
FueiSource NonRolator Rotator - Zwironment - RotatorMixingVol
. - LaroMixingVol
= inlet ~  Compressor 1A
= Duct :
; - BleedCoolComp
i
i~ Combustor - Tumine
. © StoredMassDuct -
: - BleedCoolTurbine
- BleedDuct
i Shatt
- Nozzle
- RotorShat
(b)
I~ MassFlowRate
—_—
: - ThroatArea |
“ExitArea
NozzieOesignPoinData =} ;
DrsgCoefficient
" VelocityCoefTicient
m == - GrossThrust

-{ HozzlelnitialOperatingData

fransientCantroller t

i TimeArrsy
-{ ThroatAreaTransientControliers Heﬂ
ValseArray (+

L‘ ExitAresTransientControllers >

Figure 1 (a) decomposition of engine component; (b)
hierarchical engine data object model; (c) subchildren

objects inside nozzle data object
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purpose. NozzleSolution object is used to store the
solution datasets after a simulation, which itself
contains other children data objects that are not shown
here. An optional Descriptor object can aiso be
included to describe nozzle operating status.

ENGINE DATABINDING FRAMEWORK

Based on our data object model design. an Engine
Data Binding (EDB) Framework has been implemented
in Java to facilitate binding an engine data object into a
data entity in XML-based engine data file. The
framework makes it easy to convert between the engine
data stored in XML file and their object representations,
and facilitates the applications to access, modify and
store any engine component data object. Figure 2 gives
a schematic representation of all components in engine
databinding framework. Engine databinding framework
can also be run as a standalone application [8].

Engine Schema

Engine schema establishes a bridge between XML-
based engine data and its data object model. It
associates each piece of the information defined in the
data object model to a precise location in the XML
structure. A set of engine schemas have been designed
using XML Schema language [9] that specifies how the
constituents of the engine data objects are mapped to an
underlying XML-based engine data structure. The rules
in the data model will guarantee that the schema
description of engine data is syntactically correct and
also follows the grammar defined within it.

Figure 3 shows a sample schema representation for
the Voz-/e and one of its children, TransientController,
which is used to supply transient control parameters for
throat and exit areas. Based on the Nozzle data model

shown in Figure 1(c), the “Nozzle” schema defines all
the data elements that are contained in a single nozzle
data object. These elements are constrained by their
corresponding complexTypes and simpleTypes and
encapsulated in the Nozz/e object. For example,
NozzleDesignPointData defines all its permitted data
variables, such as MassFlowRate, ThroatArea etc, and
their corresponding data types, which are built-in
double type. Also note that in the above Nozzle schema
only NozzleDesignPointData element is explicitly
defined, the rest of its element definitions use the “ref”
attribute to tell the data parser in the engine simulation
that the definition for these elements are defined in
other schema files with the same target namespace (i.e,
the default “engine” namespace in Fig.3) as nozzle.
These ‘ref’ed schema will be automatically included by
schema parser during the run time. This kind of flexible
design will guarantee that all the basic schema types
can be reused. Moreover, it will allow for modular
development and easy modification of engine schema
as engine data object model evolves in the future.

Schema Compiler

The engine schema compiler is designed to map an
instance of an engine schema into the appropriate
engine data object model. It auromatically translates an
engine-specific schema into a set of derived engine data
object models (set of classes and types which represent
the data) with appropriate access and mutation (i.e., get
and set) methods that can be used to affect the
underlying engine data files. Figure 4 shows an
example of how a generated class should correspond to
the nozzle schema defined in the previous section. With
the “Nozzle” schema defined, attributes are “compiled”
into simple Java types. usually primitives; element
(along with its type information which specifies the
content model) becomes engine data class, with

Simulation

Engine Data
Objects

Figure 2. Engine databinding framework
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<x~ verson="t 7>
<xsd:schema targeiNamespace="
xmins. xsa="http:/fwww w3.0rg, 223 . XMLScnema”
xmins="http://mems1.n.uiolecs =2..engine’ eiementForrDefauit="qualifieg” version="* 0"
<xsd:include schematocaucr="TransientControlier xsd"/>
<xsd:inctude schematocaucn="Descriptor.xsd"/>

~emsl v Ltoieco eduengine’

<l-- ComplexType Nozzie * 5 Jesigned to constraint Nozzie >
<xsd:complexType name="Nozzle_t">
<xsd:sequence>
<xsd:element name="Descriptor” type="Descriptor_t" minOccurs="0"/>
<xsd:element name="NozzleDesignPointData">
<xsd:complexT ,pe>
<xsd:attroute name="MassFlowRate" type="xsd:double"/>
<xsd:attmcute name="ThroatArea" type="xsd:double" >
<xsd:attncute name="ExitArea" type="xsd:double"/>
<xsd:attntute name="DragCoefficient” type="xsd:double"/>

<xsd:attrsute name="VelocityCoefficient” type="xsd:double"/>

<xsd:attncute name="Gross Thrust” type="xsd:double™">
</xsd:complexT ype>
</xsd:element>
<l-- NozzleinitialCce-aungData element is similarily gesigned
and ommittes ~=-e for simplicity-->
<xsd:element name= ThroatAreaTransCntl"
type="TransientCnti_t"/>
<xsd:element name="ExitAreaTransCntl"
type="TransientCnti_t"/>
<!—All NozzieSc:.m 3nData elements and ommitted for simplicity-->
</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string" use="required"/>
<{xsd:complexType>
</xsd:schema>

<?xml version="1.0"?>
<xsd:schema xmins xsd="http:. ‘www.w3.0rg/2001/XMLSchema”
elementFormDefauit="guaiified" version="1.0">

<!-- TransientController 2z mpiexType -->
<xsd:compiexType name="TransientCnti_t">
<xsd:sequence>
<xsd:elemert ~ame="TimeArray" type="doubleDatalist"/>
<xsd:elemert ~ame="ValueArray" type="doubleDatalist"">
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:simpieType name="ZoubleDatalist">
<xsd:list itemType="xsd:double"/>
</xsd:simpleType>
</xsd:schema>

/I~ alt the Java mport statements here

public class Nozzie implements java.io.Senalizable ¢
private String _name;
private Descriotor descriptor;
private DesignPointData _nozzleDesignPointCaa;
private IntCceratingData _nozzlelnitOperatingCata;
private ThreatAreaTransCntl _throatAreaTransCol;
prvate ExitAreaTransCntl _exitAreaTransCntl;
private NozzeSolutionData _nozzieSolutionData;

pubiic Nozz'ef} {
super();

}
public String getName() {
return this._name;

public void seiName(String name) {
this._name = name;

}
public ExitAreaTransCntl getExitAreaTransCntl(} {
return this._exitAreaTransCntf;

public void setExitAreaTransCnt{ExitAreaTransCntl exitAreaTransCatl) {
this._exitAreaTransCntl = exitAreaTransCntl;

}
/1~ the same with all other types and are omitted here

public bociean validate()
throws SngineValidationException  {
ry {
*/alidator validator = new Validator{};
salidator validate(this); }
caich (EngineValidationException vex) {
return faise;

return irue,

public voic —arshal(java.io. Writer out)
throws MarshalException, EngineValidationException {
Marshaiier.marshal(this, out);

public static Nozzle unmarshal(java.io.Reader reader)
throws MarshalException, EngineValidationException {
return (Nozzie)Unmarshalier.unmarshai(Nozz:e.class, reader);
)

}

Figure 3. Engine schema representation of Nozzle and

TransientControl data object model

Figure 4. Nozzle data class generated by schema

compiler process

generated data types and properties encapsulated in it.
The generated class provides pairs of accessor (ger) and
mutator (set) methods for all the properties defined in
engine schema, which closely follows the JavaBean
Design Pattern [10].

In addition, the engine schema compiler can
generate the data -validation’ class code so as to
enforce the constraints expressed in the schema. The
code generated by the valid schema translation will
check that incoming engine data files are ‘legal’ with
respect to the constraints defined in schema, thereby
ensuring that only valid XML-based engine data files
are produced by the marshalling process.

The generated Java classes also include a set of
marshal, and unmarshal methods that can be used t
“translate” engine application data from/to engine data

4

objects automatically. These are achieved through an
underlying Marshalling Framework design.

Marshalling Framework

The marshalling framework supports the
transportation (unmarshal) of XML-based engine data
into “graphs” of interrelated instances of objects that
are generated by engine schema complier and, in
addition, converting (marshal) such graphs back into
engine data stored in XML documents. The marshal
method works by taking a desired Writer object as
argument and then returning an XML element
representation of that object. If the object contains
references to other engine data objects, then recursion
can be used, using the same method. The same applies
to unmarshaling process where a general Reader is
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used. When the engine data are correctly unmarshaled,
¢ach element node in the XML file becomes an instance
of the data class that was generated by engine schema
compiler, i.e. engine data object. Then, the engine
simulation components can use the corresponding
methods, along with a set of mutator and accesor
methods, to work with the engine data in the underlying
data file. The end result is engine data binding.

SIMULATION ARCHITECTURE

X-Jgts i1s a web-based, interactive, graphical,
numerical gas turbine simulator which can be used for
the quick, efficient construction and analysis of
arbitrary gas turbine systems. It also provides a
systematic, meaningful data presentation and secured
data operation scheme with the support of a built-in
data binding framework. Figure 5 illustrates the overall
simulation architecture described in this paper, as well
as its major components and the interactions between
web client and simulation server,

Web Client

In X-Jgts system, the client user interface is
delivered through a web browser. The web browser is a
universal user interface that is responsible for
presenting engine simulation data, issuing requests to
the simulation web server. and handling any results
generated at the request of the user. X-Jgis uses both
dynamically generated HTML and Swing-based Java
Applet to properly present user-friendly data; in
particular, HTML is used to display simulation results,

while Swing-based Applet is used for graphic data
display. The platform-independent nature of HTML and
Java Applet enables the engine simulation to be widely
conducted from heterogeneous, networked computers.

As a general rule for web-based simulation,
application logic should not be implemented on the
browser. Complex simulation logics that are tightly
built into Applets are normally inefficient to execute
due to the fact that client side users generally lack
powerful computing resource. In addition, it may take
quite a long time for a client’s browser to load.
Therefore, the browser, HTML, and Swing Applets
designed in X-Jgts are used strictly for delivering the
user interface and view into the engine simulation. The
user requests are made either from the front-end Applet
or HTML code to perform designate tasks remotely in
the simulation web server.

Simulation Server

Engine simulation server is a dynamic extension of
a Web server and the heart of any web interactions. It
uses HTTP as protocol for communication and consists
of static resources, such as the front end simulation
Applet, as well as dynamic web pages (HTML) that are
generated by different engine web components hosted
in the server. The web server listens for incoming
requests and then services the requests as they come in.
Once the server receives a simulation request, it then
springs into action. Depending on the type of request,
the web server might look for a web page, or execute a
web component on the server. Either way, it will return
some kind of results to the web client.

In X-Jgts, engine web components are sets of

HApp Server eI
Engine D = ¥
Databinding — K %
Engine | Result o)  XSLT == K
Simulation Data Processor B v
Computing |36ty o &
set T § 5 %
¢
EDO Cont. B
gB ~ Data §8 " Conf. Data |g%
A % WA
DB (Download,, > @
Data . 1
Blslplag, Request ;}
Download Handler I3
Servlets Dispatcher %

Figure S. Web-based simulation architecture in X-Jgts
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simulation task-related Servlets [11] or JavaSever Pages
[12]. ServlevJSP provides a platform-independent
means of extending a web server's capabilities. When a
user issues a request for a specific Servlet, the server
will simply use a separate thread and then process the
individual request. This has a positive impact on
pertformance.

Engine web components are running in the Tomecat
[13] Web container to dynamically process various
simulation requests and construct responses. The web
container provides services such as request dispatching,
security, concurrency, and life-cycle management.
Based on different task-related services, engine web
components may invoke other web resources directly
through embedded URLs that point to other web
components while it is executing, or indirectly by
forwarding a request to another resource using
ReguestDispatcher. There are four main services
currently available in the engine simulation server.

Simulation Web Component

Engine simulation service is a core web component
that provides a transient, space-averaged, aero- and
thermo-dynamic gas turbine analysis for a web client
based on the engine analysis model. Besides that, the
simulation web component includes the built-in engine
databinding support and an underlying XML-based
engine database repository to store simulation data
(Figure S5). During the engine simulation, the
verification logics that are automarically generated by
engine schema compiler can be applied inside the
simulation so that the users’ inputs and simulation
outputs could be checked. Engine components can also
conveniently manipulate the engine data with a set of
accessor and mutator methods devised from
databinding framework. When a simulation completes,
engine components can readily marshal sets of engine
object data into the underlying data repository for
storage and unmarshal them back to engine data objects
later when data manipulation is necessary. This feature
gives a very useful and natural way for the storage of
any engine data object and provides the engine
simulation with unambiguous. meaningful and
interpretable representation of engine data sets. The
engine simulation service can also generate simulation
graphs and transcript data dynamically and send them
to the front-end Applet for display.

File Download Web Component

X-Jgts allows users to save their simulation results
to the local file system so that users can redisplay their
simulation result or restart simulation at a later time.
This is achieved internally by the file-download service.
Due to security reasons. current web browsers prohibit
the front-end simulation Applet from directly writing
data files on the host that is executing it. Nevertheless,
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Applets can usually make network connections to the
host they came from. In X-Jors. whenever a user wants
to download a complete simulation result or engine
configuration file, the front-end Applet will make a
request to file-download service resided on the
simulation web server, locatwe the corresponding case
file from database repository and then generate a
download response to the user. By setting the HITP
Content-Dispositicn response  header  as
attachment, Web browser at client side will pop up a
"save as" box to let user save simulation result.

File Upload Web Component

At times users have a requirement to upload a file
from their local file system to the web server for display
of engine simulation result in a more meaningful
way. X-Jgts web components include a Servlet that can
receive a file upload using its input stream. When a file
is sent via a browser, it is embedded in a single POST
request with multipart/form-data [14] encoding type.
The file upload Servlet will take in the part of this
multipart data stream, reassembled and encoded on the
server, and then dispatch the processing results to
display service, where dynamically generated engine
data file in HTML format are sent to client’s browser
for display.

Display Web Component

Since engine data are storad in XML file format, it is
easier to apply certain transformation logic such that
simulation results can be displayed in a more friendly
way within the user’s browser. XSLT [13] provides a
way to transform the engine data without cluttering up
the web components code with HTML. When the
simulation server receives a display request, the build-
in XSLT processor knows how to parse engine
component-specific XSLT style sheets and apply
transformations. Best of all. a clean separation between
engine data, presentation, and simulation logic allows
changes to be made to the look and feel of a web site
without altering the simulation code. Because XML-
based engine data can be transformed into many
different formats, it can also achieve portability across a
variety of browsers and other devices.

DEMONSTRATION

Based on the designed data object model,
databinding architecture, and simulation architecture, a
web-based engine simulation has been implemented
that internally uses Onvx [16] as the engine simulation
logic. Onyx is an object-oriented framework for
propulsion system simulation. Figure 6 shows the
XML-based Java Gas Turbine Simulator, X-Jgts, being
accessed from an Internet Explorer browser.
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Figure 6. XML-based Java Gas Turbine Simulator accessed from a Web browser

For practical purposes, X-Jgts currently provides
users with 3 different kinds of simulation services. A
simulation identifier (ID) is required to perform each
service.

Start a new simulation

A user can use this choice to start a new engine
simulation in interactive construction mode. After the
user enters a simulation ID, and starts to perform the
simulation, the Swing-based Applet interface (Figure 6)
will appear. From there the user can access the various
main windows of the simulation system: Engine
Schematic Layout, System Control Dialog, Graphing,
Transcript, or Save User Case.

Before each simulation is run, the user must provide
each individual engine component with initial
simulation configuration data from the designed Engine
Schematic Layout Dialog (see Figure 7). An engine
model is developed by building an engine component
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schematic graphically as /cons (2.2.. BleedDuct, Nozzle,
VariableCompressor, etc.) and connecting them
together. In the diagram, the arrowheaded connecting
lines represent both the directional flow path for fluid
through the engine, and the structural connections along
which mechanical energy is transmitted. The user can
define the operational characteristics for the component
(i.e., the component name, design- and initial-operating
point data, etc.) in the engine component’s dialog
window (Figure 8). The System Control Dialog (Figure
9) provides controls for the overall operation of the
simulation. The steady-state numerical solver is used to
balance the gas turbine equations at the initial operating
point as was defined by the user: while transient solvers
are used for dynamic engine performance analysis.
When the necessary data input for simulation
configuration is finished, the simulation can have the
option to start simulation immediately or download the
configuration file and run it later.
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Figure 8. Dialogs used to set engine component (Nozzle) operational characteristics
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Figure 10. Graphically display engine component parameters

Once a simulation begins, the engine configuration
data will be encoded in XML format and sent over the
[nternet to the web simulation server. When the server
receives the engine configuration file, it then
automatically dispatches the file to the simulation web
component. where engine databinding and simulation
logic are performed. At the same time, the user can
select from Graph Control Dialog (Figure 10) to plota
number of specified parameters for any of the
components currently displayed in the Engine
Schematic Layout window. The user may also view
simulation status reports, using the Transcript button
shown in Figure 6, that are sent from simulation web
server during the simulation. Once the simulation is
completed, the simulation web component will marshal
all engine data objects into an engine data file
designated by its simulation ID, and store it into the
database repository. Finally, the user can use Save
User Case button to download the complete solution of
the simulation case for later use.

Rerun simulation from an existing file

X-Jgts also provides a service for users to directly
input engine simulation configurations from a file,
which allows bypassing the engine construction
procedures. Part of a sample configuration file is shown
in Figure 11. When a user uploads the configuration file
from a web browser (Figure 6), all the defined
simulation parameters will be immediately available
from Engine Schematic Layout Dialog and System
Control Dialog. Users can then use User cases menu in
Engine Schematic Layour to verify these configurations.
Users can also edit these data using the above two
dialogs. In this case, the updated configuration file will
be sent to the server to run the simulation.

Show existing simulation data results

If a user has finished an engine simulation case and
saved the simulation data using X-Jgts, he/she can later
redisplay the simulation results in a web browser with a
more meaningful data presentation scheme using this
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service. In this case, when the web simulation server
receives an engine simulation case file uploaded from
the user’s web browser (Figure 6), it will internally use
Display Web Component (combined with sets of pre-
designed XSLT style sheets) to dvnamically generate
HTML code for display within the user’s browser.
Figure 12 shows the nozzle data file from an example
simulation case. The user can choose different engine
components to display from the drop-down list at the
top of the web page.

<2 o
<Engine3sct xmi
p

RS

ins="http://mems 1.ni.utoledo ec.iengire >
=~ginelihVersion>1<:Enginel.oVersion>
<E-gneBase BaseName="XJGTS">
<Confguration>
<SteadyStateSolver SioverName="NewtonRaznsonSolver”
ErrorTolerance="5.0E-4" ConvergenceRate="0.7"
InteratonToFailure="50" Peuroa: ¢~ 3-28="0.25"
LowerPartalLim="0.001C" Uooer®z = a.Limit="0.01"7>
<TransientSoiver SioverName= I~grovecE. er
ErrorTolerance="5.0E-4" ConvergenceRate="0.7"
InterationToFauure="50" CetaTime="0.2"
FinalTime="2.0" Pertyroa: onSize="C.25"
LowerPartiailimit="0.001C" UooerPzr aLlimit="0.01" />
<Connectors>
<Connector from="Environment” 10="LPC" sFeedback="false">
<Connector from="__PC" 10="MV13" sFescoack="false"/>
<Connector from="MV13" ‘o="HPC" .sFeecack="false">
<t other connectors are defined in a sir:ar mannar -->
<Connectors>
< Configuration>
<EngineModel>
<Components>
<!—only Nozzle is ilustratea nere. the same with all other components —>
<NonSource>
<NonRatator>
<Nozzle Name="Nozzle">
<NozzleDesignPointData MassF owRate="195.0"
ThroatArea="430.0" ExitArea="492.0" DragCoefficient="0.952"
VelocityCoefficent="0.98" GrossThrust="9400.0"/>
<i—the same with NozzielmtFc.ntData—->

<TimeArray> 0.0 10.0 13.0 < TmeAmay>
<VaiueAmray> 430.0 430.C £€C.0 <ValueArray>

<ThroatAreaTransientContro ‘ers>

<!— the same with ExitAreaT ansientControllers ~>

<Nozzle>
<NonRatator>
<NonSource>
<:Components>
< EngineModet>
< EngineBase>
</EngineRoot>

<ThroatAreaTransientControiers name="Throat Area Transient Controller™>

Figure 11. Engine simulation
specified in XML file format

configuration
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Figure 12. Nozzle simulation data displayed within a user’s web browser

CONCLUSION

In this work, an XML-based dynamic databinding
framework for use in engine simulation has been
discussed. By dynamic data binding, the framework
provides an object interface to access and use engine
data, transparently mapping simulation data in engine
components as engine data objects. The framework also
enables the separation of engine simulation logic from
its persistence logic. such that the engine simulation
codes and the underlying data persistence codes can be
developed independently.

Since engine component data in the binding process
are stored in an XML document, they not only bypass
the requirement to have a standard binary encoding or
storage format, but also provide the meaning of the data
through its tag representation. Furthermore, it is
completely natural to move around XML engine data
using HTTP through disparate networks.

This paper also describes a Web-based engine
simulation system, X-J/gts, which internally uses engine
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databinding framework. The simulation system couples
a front-end graphical user interface, developed using
the Java Swing API, and various Java Servlet-based
web components from engine simulation server to
service user’s requests. The designed web components
include remote simulation service, dynamic data
display service in HTML format, and file download and
upload services which allow a user to save data for later
use in a more secure way. All these services are readily
available via the built-in databinding framework
support and the use of XML to describe engine data.
The combined package provides analytical, graphical
and data management tools which allow users to
construct and control dynamic gas turbine simulations
by manipulating graphical objects from a variety of
heterogeneous computer platforms through the use of
Java-enabled world-wide web browsers.

The method developed in this paper is generic and
may readily be used for other simulation applications
requiring intensive data exchange. Using this approach,
developers are enabled to design better aircraft engine
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simulation codes via a systematic and more meaningful
data representation scheme and a built-in data
validation method.

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial tinancial
support from NASA Grant NAG-1-2244 under the
direction of Mr. Wayne K. Gerdes, NASA Langley
Research Center. They also would like to express their
appreciation to Dr. John A. Reed, the University of
Toledo, for providing parts of Onvx [16] simulation
code to test this work.

REFERENCE

[11 Reed,J. A., Follen, G. J. and Afjeh. A. A., Improving the
Aircraft Design Process using Web-based Modeling and
Simulation, ACM Transactions on Modeling and
Computer Simulation. Vol. 10, No. 1, 2000, pp. 38-83

[2] Fishwick, P. A., Hill. D. R. C. and Smith. R., Eds.,
Proceedings of the 1998 International Conference on
Web-Based Modeling and Simulation. SCS Simulation
Series, Vol. 30, (1998).

[3] Reed, J. A. and Afjeh. A. A 4 Java-based Interaciive
Graphical Gas Turbine Propulsion System Simulator,
ATAA paper 97-0233. 35th Aerospace Sciences Meeting
and Exhibit, Reno NV

[4] EngineSim Beta Version 1.5b, NASA Glenn Leaming
Technologies Project. http: www.grc.nasa.gov/W W W/K-
12/airplane/ngnsim.html

[5] Extensible Markup Language (XML) 1.0, W3C
Recommendation. Feb. 1998

[6] Daniele, C. J., Krosel. S. M., Szuch, J. R., and
Westerkamp, E. J. “Digital Computer Program for
Generating Dynamic Engine Models (DIGTEM),”
NASA TM-83446, 1983.

[71 Reed, J. A., “Development of an interactive graphical
propulsion system simulator.” Master of Science Thesis,
The University of Toledo. Toledo. Ohio, August 1993.

[8] Lin, R. and Afjeh, A. A.. 4 Dvnamic Data Binding
Framework for High Performance Object-Oriented
Propulsion  System  Simulation, 2002 Advanced
Simulation Technologies Conference. High Performance
Computing Symposium. April 2002

(9] XML Schema Part 0: Primer, W3C Recommendation,”
2 May 2001, http://www.w3.org/TR/xmlschema-0

[10] Watson, M., “Creating Java Beans: Components for
Distributed  Applications.”  Morgon Kaufmann
Publishers, Sept. 1997

[11] Sun Microsoft System. Java Servlet Specification at:
hitp://java.sun.com products servietindex.html

[12] Sun Microsoft System, Java Server Page Specification
at: http://java.sun.com products/jsp-index.htmt

[13] The Jakarta Project at: hitp: ‘jakarta.apache.org

[14] File Upload Specification RFC1867
http://www.ietf.org i ric1N67.1xt

11

[15] XSL Transformation W3C Recommendation version 1.0,
November, 1999. hup: www.w3.ore TR/xslt,

[16] Reed, J.A..1998. “Onyx: An Object-Oriented Framework
for Computational Simulation of Gas Turbine Systems,”
Ph.D. Dissertation. The University of Toledo

American Institute of Aeronautics and Astronautics



Reed. J. ., Follen, G. J. and Afjeh, A. A.

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation

John A. Reedf, Gregory J. Folleni, and Abdollah A. Afje:hl‘r

"The University of Toledo
2801 West Bancroft Street

Toledo, Ohio 43606

INASA John H. Glenn Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Keywords: Web-based simulation, aircraft design, distributed simulation, Java™, object-oriented

Supported by the High Performance Computing and Communication
Project (HPCCP) at the NASA Glenn Research Center.

Page 1 of 35



Reed, J.A., Follen, G. J. and Afjeh, A. A.

Abstract

Designing and developing new aircraft systems is time-consuming and expensive.
Computational simulation is a promising means for reducing design cycle times, but requires a
flexible software environment capable of integrating advanced multidisciplinary and multifidelity
analysis methods, dynamically managing data across heterogeneous computing platforms, and
distributing computationally complex tasks. Web-based simulation, with its emphasis on
collaborative composition of simulation models, distributed heterogeneous execution, and
dynamic muitimedia documentation, has the potential to meet these requirements. This paper
outlines the current aircraft design process, highlighting its problems and complexities, and

presents our vision of an aircraft design process using Web-based modeling and simulation.
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1 Introduction

Intensive competition in the commercial aviation industry is placing increasing pressure on
aircraft manufacturers to reduce the time, cost and risk of product development. To compete
effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle
times are needed. Computational simulation, such as computational fluid dynamics (CFD) and
finite element analysis (FEA), has the potential to compress design-cycle times due to the
flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and
because it can be used to integrate multidisciplinary analysis earlier in the design process [17].
Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and
geographically separated design teams, continue to restrict the use of these tools. In order to fully
realize the potential of computational simulation, improved integration in the overall design
process must be made. The opportunity now exists to take advantage of recent developments in
information technology to streamline the design process so that information can flow seamlessly
between applications, across heterogeneous operating systems, computing architectures
programming languages, and data and process representations.

The World Wide Web has emerged as a powerful mechanism for distributing information on a
very large scale. In its current form, it provides a simple and effective means for users to search,
browse, and retrieve information, as well as to publish their own information. The Web continues
to evolve from its limited role as a provider of static document-based information to that of a
platform for supporting complex services. Much of this transformation is due to the introduction
of object technologies, such as Java and CORBA (Common Object Request Broker Architecture)
[36] within the Web. The integration of object technology represents a fundamental (some would
say, revolutionary) advancement in web-technology. The web is no longer simply a document
access system supported by the somewhat limited protocols. Rather, it is a distributed object

system with which one can build general, multi-tiered enterprise intranet and internet

applications.
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The integration of the Web and objeét technology enables a fundamentally new approach to
simulation: Web-based simulation. A Web populated with digital objects — models of physical
counterparts — will lead to model development by composition using collaborative Web-based
environments [9]. Model execution will occur across networks using Web-based technologies
(e.g., Java) and distributed simulation techniques (e.g., CORBA). Finally, simulation execution,
models, and other related data will be documented using forms of hypermedia (hypertext, video,
virtual models, etc.).

Web-based simulation has the potential to provide the necessary tools to improve the aircraft
design process through integration and support for collaborative modeling and distributed model
execution. In the remainder of this paper, we examine how this might be achieved. In Section 2,
we provide a brief overview of the aircraft design process, drawing attention to the complexities
of the process and its inherent problems. Section 3 provides a review of the area of Web-based
simulation, and singles out several principles of Web-based simulation that we believe are
important in the aircraft design process. In Section 4, we present an example scenario illustrating
how Web-based modeling and simulation might be used in that process, and discuss aircraft
model development and distribution using the Onyx simulation framework. Onyx’s object-
oriented component model, visual environment for model assembly, and support for both Web-
based and distributed object execution are explained in context of the integration of a jet engine
within the aircraft. Lastly, in Section 5, the relationships to the Web-based simulation principles
outlined in Section 3 are identified and discussed, as are general implications of Web-based

simulation on the design process.

2 The Aircraft Design Process

The aircraft design process can be divided into three phases: conceptual design, preliminary
design, and detailed design. The conceptual design phase identifies the various conditions of the
mission, and synthesizes a set of initial aircraft configurations capable of performing the mission.

For commercial aircraft, the mission is defined by airline company demands, which typically
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include payload requirements, city-to-city distance along a proposed service route, traffic volume
and frequency, and airport compatibility. If the conceptual design effort confirms the feasibility of
the proposed mission. management may decide to proceed with one or more preliminary designs.
In the preliminary design phase, more detail is added to the aircraft design definition. Here the
aerodynamic shape, structural skeleton and propulsion system design are refined sufficiently so
that detailed performance estimates can be made and guaranteed to potential customers. In the
final design phase, the airframe structure and associated sub-systems, such as control systems,
landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete detail
[17].

The design of an aircraft is an inherently complex process. Traditional preliminary design
procedure decomposes the aircraft into isolated components (airframe, propulsion system, control
system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat transfer,
acoustics, etc.) which affect their performance. The normal approach is to perform disciplinary
analysis in a sequential manner where one discipline uses the results of the preceding analysis
(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airframe is
the first step in the preliminary design process. Using the initial Computer-aided Design (CAD)
geometry definitions resulting from the conceptual design studies, aerodynamic predictions of
wing and fuselage lift and drag are computed. Key points in the flight envelope, including take-off
and normal cruise, are evaluated to form a map of aerodynamic performance. Next, performance
estimates of the aircraft’s propulsion system are made, including thrust and fuel consumption rate.
The structural analysis uses estimates of aerodynamic loads to determine the airframe’s structural
skeleton, which provides an estimate of the structure weight.

Complicating the design process is the fact that each of the disciplines interacts to various
degrees with the other disciplines in the minor analysis loop. For example, the thrust requirements
of the propulsion system will be dependent on the aerodynamic drag estimates for take-off, climb
and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horizontal

and vertical tail, which in turn influence the design of the control system. For an efficient design
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process, fully-updated data from one discipline must be made accessible to the other disciplines
without loss of information. Failure to identify interactions between disciplines early in the minor
design cycle can result in serious problems for highly integrated aircraft designs. If the coupling is
not identified until the system has been built and tested experimentally. then the system must
undergo another major cycle iteration, further increasing the time and expense of product
development.

There are many factors that can make the design process less efficient. These include:

(1) Lack of interoperabilitv. Numerous software packages — CAD, solid modeling, FEA,
CFD, visualization, and optimization — are employed to synthesize and evaluate designs.
These tools are often use different, possibly proprietary, data formats. As a result, they
generally do not interoperate, and require manual manipulation when passing data
between applications. Although in some cases, custom translation tools are available to
“massage” the data into the appropriate format, users still spend considerable time and
effort tracking data and resuits as well as preparing, submitting and running the computer
applications [28].

(2) Heterogeneous computing environments. The aircraft design computing environment is
extremely heterogeneous, with platforms ranging from personal computers, to Unix work-
stations, to supercomputers. To use the various software required in the design process,
users are forced to become familiar with different computer architectures, operating sys-
tems and programming languages.

(3) Geographically separated design groups. Multidisciplinary design and analysis is fre-
quently carried out by geographically dispersed engineering groups. In special cases,
entire subsystems may be designed and developed by third-party contractors or compa-
nies. The propulsion sub-system, for example, is designed and built separately by the pro-
pulsion company, and delivered to the aircraft company for installation in the aircraft. In
any case, geographic separation places pressure on the designers to maintain a high level

of interaction during the design process so that loss of data is minimized.
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Improving the design process, thereforé, requires the development of an integrated software
environment which provides interoperability standards so that information can flow seamlessly
across heterogeneous machines, computing platforms, programming languages. and data and
process representations. We believe that web-based simulation tools can provide such an

environment.

3 Principles of Web-based Simulation

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a
powerful tool for connecting people and information on a global scale. Built on broadly accepted
protocols, the WWW removes incompatibilities between computer systems, resulting in an
“explosion of accessibility” [2. 30]. Within the simulation community this proliferation has led to
the establishment of a new area of research — Web-based simulation — involving the exploration
of the connections between the WWW and the field of simulation. Although the majority of work
in web-based simulation to date has centered on re-implementation of existing distributed and
standalone simulation software using Web-related technologies, there is growing
acknowledgement that web-based simulation has the potential to fundamentally alter the practice
of simulation [11].

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies
many potential effects of web-based simulation, with attention given to three kev simulation
areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that
there is great uncertainty in the area of Web-based simulation, but advises simulation researchers
and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick’s
observations, Page and Opper [25] present six principles of web-based simulation which capture
the vision of future simulation practice: (1) digital object proliferation, (2) software standards
proliferation, (3) model construction by composition, (4) increased use of “trial and error"
approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and

multi-language systems.
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In the remainder of this section, we briefly review several of these principles. [n the following
sections, we will examine in more detail how each apply to both the development of a simulation

environment, and to the improvement of the aircraft design process.

3.1 Digital Objects.

In the mid 1960°s a pioneering simulation language called Simula-67 [3] was developed to
more faithfully model objects in the physical world. Simula-67 introduced many of the core
design concepts (e.g., classes and objects) which form the foundation for the object-oriented
programming paradigm. Since that time, object-oriented technologies, such as object-oriented
programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of
simulation. Today, the majority of simulation languages, as well as many of the most successful
general purpose-languages, are object-oriented.

The importance of objects in simulation applications naturally leads us to consider their use as
part of the WWW infrastructure. The WWW, however, is currently based on documents. rather
than objects. In the future, though, it is envisioned that the Web will be populated by digital
objects, with documents being just one type of object. The objects, representing models and data
for use in simulation environments, will be made available for use through publication on the
WWW [9].

Indications of a transition to an object-based WWW are currently evident in the successful
application of mobile code and distributed object technologies. Mobile code — programs which
can be transmitted across a network and executed on the client’s computer — make it possible to
deliver digital objects, in either executable or serialized form across the WWW. Several
programming languages which can produce mobile code have been developed [4, 32, 33. 34]; the
most well known and widely supported is Java [1]. Compiled Java code, known as byte-code, can
be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The
Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class

library that can be accessed by the compiled code.

Page 8 of 35



Component Object Model (COM) [29], and High Level Architecture (HLA) [21]. Alternatively, a
component architecture may be defined by the particular simulation application in which the
objects are to operate. This is often the case in domain-specific simulation environments, where
the component architecture must be crafted to meet specific requirements of the domain. The
Onyx simulation environment, described in the following section, is such an example; it defines a

component architecture which is oriented towards physical modeling of aerospace systems.

3.4 Heterogeneous Modeling and Simulation

The digital objects of our Web-based simulation future will populate a Web that is highly
heterogeneous. Digital objects will certainly be developed using different programming languages
and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects
will themselves be highly variable. Some will be based on mobile code which can move across the
Web (e.g., agents), while others will form object busses which provide services from specific
locations on the Web. Applications will become more complicated as a result, with complex
multi-tier architectures becoming the standard. In order to operate effectively in such an
environment, Web-based simulation will need extensive enabling technologies such as search
engines to locate appropriate digital objects and models, translators to convert models and data to

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation

models.

4 An Example Scenario

In this section, we present a scenario illustrating how Web-based modeling and simulation can
be used in the aircraft design process. Our goal is to discuss both the technical issues related to the
design, development and publication of digital objects, as well as organizational issues
concerning the roles engineers and programmers play in the Web-based design process. Although
the discussion is oriented towards the aircraft design process, we believe that it is applicable to

engineering processes used in many fields.
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4.1 Onyx

The modeling and simulation environment for our research is the Onvx simulation system [26,

27]. The major features of Onyx include the following.

» A set of object classes and interfaces for representing the physical attributes and topology of
the aircraft system is included. These classes comprise an object-oriented component architec-
ture capable of housing the analytical and geometric views of the various aircraft components
employed in the design process. The architecture facilitates and ensures object interoperability
among separately developed software components.

* A visual assembly interface is included for graphical creation and manipulation of aircraft
system models. It enables users to establish model design, control model execution and visu-
alize simulation output.

* A dynamically-defined, run-time simulation executive is included to control complex, multi-
level simulations.

* A persistence engine capable of transparently accessing geometry and data stored in either
relational or object database management systems is included.

* A connection service provides access to federated model and data repositories using standard
internet protocols. Various connection strategies to access Web- and server-based distributed
objects are included.

Our goal in creating Onyx is to develop a simulation-based design system that promotes

collaboration among aerospace designers and facilitates sharing of models, data and code. Special

emphasis is placed on developing a distributed system which fosters reuse and extension in both
the models and the simulation environment. To achieve these goals, we have made extensive use
of object-oriented technologies such as object-oriented frameworks, software components, and
design patterns.

An object-oriented framework is a set of classes that embodies an abstract design for solutions
to a family of related problems [19]. Onyx is designed as a layered collection of frameworks, with

individual frameworks for the visual assembly interface, persistence engine, connection services,
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simulation executive and component architecture. The set of classes in each framework define a
“semi-complete” structure that captures the general functionality of the application or domain.
Specific functionality is added to Onyx by inheriting from, or composing with, framework
components. [n the example in the next section, we will illustrate this by deriving new classes to
represent the components in an aircraft engine, then assembling instances of those classes to form
a complete engine model.

A key characteristic of Onyx, and object-oriented frameworks in general. is its inverted control
structure. In traditional software development, the application developer writes the main body of
the application which defines a series of calls to various libraries of subroutines. These libraries
provide reusable code, while the main body is customized by the application developer. In
framework design, the control structure is defined by the framework, with predefined calls going
to methods that the application developer writes. In this approach, the design or structure of the
application — which is domain-specific — is reused, and the specific runctionality of the
application is provided by the developer. Using this approach, Onyx reduces the burden for
aircraft engineers and modelers, allowing similar aircraft component models to be developed
faster and more efficiently. The concept of reuse is best illustrated for modeis that are assembled
from a library of components (i.e., composition), and for models that are made in several versions
with minor differences (i.e., inheritance).

A major product of object-oriented design is the identification of software components — self
contained software elements which can be controlled dynamically and assembled to form
applications. The central step in identifying them is recognizing recurring fundamental
abstractions in the domain. By identifying these abstractions and standardizing their interfaces,
these components become interchangeable. Such components are said to be “plug-compatible” as
they permit components to be “plugged” into frameworks without redesign. Onyx’s software
components use a variant of the JavaBeans [7] component architecture to define standard
interfaces and abstractions. These components represent the “plug-compatible, digital objects”

with which the Web-based models of the aircraft and its subsystems are developed.
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Throughout the Onyx environment, design patterns — recurring solutions to problems that arise
when building software in various domains [13] — are used to achieve reuse. Patterns aid the
development of reusable software components and frameworks by expressing the structure and
collaboration of participants in a software architecture at a level higher than source code or object-
oriented design models that focus on individual objects and classes [31]. Patterns also are
particularly useful for documenting software architectures and design abstractions. They provide
a common and concise vocabulary which is useful in conveying the purpose of a given software
design.

The Onyx simulation environment is designed to be both multi-tiered and platform
independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java
was chosen as the implementation language as it offers extensive class libraries. a distributed
object model (i.e., Java RMI), and byte-code interpreters on a wide range of computer
architectures, among other benefits. As a result, the Onyx system is extremely portable and
accessible. The visual assembly interface (described below), for example, can be run in the
context of a Web browser, which are widely available, while computationally intensive
components run on dedicated, distributed servers.

Java is also the preferred language for programming Onyx software components. as models
written in Java are easily downloaded across a network and dynamically loaded into the Onyx
environment. In cases where it is desirable or necessary to use a programming language other than
Java, software components may be accessed from Onyx using CORBA. CORBA’s ability to deal
with the heterogeneous nature inherent in distributed computing environments makes it
particularly suitable for leveraging legacy applications not written in Java. This is especially
useful for simulation of aerospace systems in which the majority of existing analysis programs
have been written in procedural languages, such as FORTRAN and C. The use of CORBA adds
flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than having to

replace or abandon them.
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4.2 Engine-Aircraft Integration Scenario
This scenario illustrates our vision of how Web-based modeling and simulation may be used in

the process of development and integration of an aircraft subsystem within the complete aircraft.
As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the
aircraft sy-stem (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and
Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing
the conceptual and preliminary designs for each respective component. These teams work
together, exchanging information as necessary, to develop the individual component designs, and
as the process progresses, to integrate them into a final design.

We have selected for our example the integration of the propulsion subsystem into the aircraft
because it represents one of the more complex aspects of aircraft design. Propulsion system
performance, size and weight are important factors in the overall aircraft design. Engine size and
thrust, for example, influence the number and placement of engines, which in turn affects aircraft
safety, performance, drag, control and maintainability. Furthermore, because the engine is
designed and developed by an external manufacturer — i.e., an engine company — this exampie
illustrates the challenges faced by designers separated both geographically and organizationally.
We intend to show how Web-based modeling and simulation can address these and other issues.

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine
manufacturer are generally organized according to a physical decomposition of the engine, with
individual teams responsible for developing the major engine components: Fan, Compressor,
Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in
the given design area, establishes a conceptual model of the component. During early phases of
design, model resolution is kept relatively coarse to speed simulations and enable more complete
exploration of the design space. Such a model typically consists of a set of algebraic and/or
linearized ordinary differential equations which describe the component’s gross behavior. At this
stage in the design knowledge of component characteristics is incomplete, so empirical data

gathered from rig-testing of previously developed components are scaled to approximate the
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current model. These data, commonly referred to as “performance maps,” attempt to capture
component characteristics within their operating range, and serve to provide closure to the
equations.

4.2.2 Component Authoring. Once a conceptual model is validated, a component author,
working closely with the model author, maps the model to the computational domain, creating a
software component which encapsulates the model abstraction. As pointed out in section 3, the
mapping is largely dependent on the choice of component architecture being used. The Onyx
component architecture used here is based upon a control volume abstraction. The use of control
volumes is standard engineering practice, wherein the physical system is divided into discrete
regions of space — control volumes — which are then analyzed by applying conservation laws
(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical
behavior (see Fig. 3). A component architecture predicated on this approach provides a
convenient and familiar mapping mechanism for modeling physical systems, and ensures that a
simulation component resembles the conceptual model developed by the model author. A brief
overview of the Onyx component architecture is presented below; a complete description can be
found in ref. [26].

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx
architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface
Element represents a control volume, and defines the key behavior for all engineering
component classes incorporated into Onyx. It declares the core methods needed to initialize, run
and stop model execution, as well as methods for managing attached Port objects. Classes
implementing this interface generally represent physical components, such as a compressor,
turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely
mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This
flexibility permits the component architecture to model a variety of physical systems.

Consider, for example, a component author in the Compressor design team wanting to develop

a representative Compressor digital object for use in simulations during preliminary design. The
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author begins by defining a concrete implementation of the Element interface, such as
SimpleCompressor (see Fig. 4). Here the author extends the abstract class DefaultElement,
which captures common implementation aspects of the Element interface, as well as maintaining
a list of Port objects associated with its subclasses. Alternatively. the author could implement the
interface directly, explicitly defining each interface method. This feature is used through the
architecture to provide flexibility: the component author may select to utilize the default
functionality of the common abstract class, or inherit from another class hierarchy and implement
the interface directly.

An Element may have zero or more Port objects associated with it. The interface Port
represent a surface on a control volume (i.e., Element) through which some entity (e.g., mass or
energy) or information passes. Ports are generally classified by the entity being transported
across the control surface. For example, the SimpleCompressor has two FluidPort objects —
representing the fluid boundaries at the Compressor entrance and exit — and a StructuralPort
object, representing the control surface on the Compressor through which mechanical energy is
passed (i.e., from a driving shaft). The Port interface defines two methods to set and retrieve the
data defined by the Port. These data may be stored in any type of Java Object, such as Hashtable
or Vector. The common abstract class, DefaultPort, defines default functionality for these
methods, and maintains a reference to the Connector object currently connected to the Port.

The common boundary between consecutive control volumes is represented by a Connector
object. The interface Connector permits two Element objects to communicate by passing
information between connected Port objects (see Fig. 3c). It is also responsible for data
transformation and mapping in situations where the data being passed from Ports of different
type. The need for such data transformation can range from simple situations, such as conversion
of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D
fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis).
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For all but the simplest cases, the al-gorithms needed to perform the data transformation/
mapping will tend to be very complex. To improve reusabilitv. Connector delegates
transformation/mapping responsibilities to a separate Transform object (see Fig. 3c) which
encapsulates the necessary intelligence to expand/contract data and map data across disciplines.
The Transform interface (see Fig 4) defines a general method, transform, which is implemented
by subclasses to carry out a particular transformation algorithm.

A similar situation is found with the mathematical model used to define component behavior.
As described above, the mathematical models used to describe Compressor (or any other
component) behavior during preliminary design are relatively simple and may be solved
analytically or using basic numerical methods. However, models used in latter phases of design
can be quite complicated. In these cases, approximate solutions are obtained by discretization of
the equations on a geometrical mesh and applying highly specialized numerical solvers. The
presence of these complex mathematical models and the numerical tools needed to solve them
suggest that it is desirable to encapsulate these features and remove them from the Element
structure. This enhances the modularity of Element, allowing new Element classes to be added
without regard to the mathematical model used, and conversely to add new models without
affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to
encapsulate the mathematical model in a separate type of object called DomainModel (see Fig.
4). The benefit of this pattern is that families of similar algorithms become interchangeable,
allowing the algorithm — in this case the DomainModel — to vary independently from the
Elements that use it. This admits the possibility of run-time selection of an appropriate
DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore,
encapsulating the DomainModel in a separate object also encourages the “wrapping” of pre-
existing, external software packages. For example, the Fan DomainModel in Fig. 3d might
“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of
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existing software analysis packages to Be easily integrated within an Element. Some of the
advantages of this concept is illustrated later in this section.

The DomainModel interface is designed to be very general, due to the complicated nature of
the various models which might be encapsulated in an Element. The intent is not to restrict the
use of any algorithm or the “wrapping” of external software packages by overly defining the
DomainModel interface. Consequently, the interface defines only two methods, execute and halt,
which are used to start and stop the execution of the DomainModel code. Additional methods are
obviously needed to access and make the data internal to the DomainModel available to the
Element, but because these are specific to the particular DomainModel structure, they are not
included in the interface. For our example, the component author has defined a
SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differential
equations and performance maps needed to model compressor behavior.

After the Compressor class definitions (i.e., SimpleCompressor, FluidPort, StructuralPort
and SimpleCompressorDomainModel) are established, the component author compiles,
verifies and tests their operation. When complete. the class’ byte-code files and any auxiliary data
(e.g., performance maps) are combined to form a single Compressor software component in the
form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating components as
they can be compressed to reduce file size, digitally signed for added security, and easily
transferred across the Web.

4.2.4 Publishing the Component. The Compressor software component is “published” by
deploying it on a Web server where it can be accessed by others in the engine company. We
envision that each engine component design team will maintain its own Web server, hosting the
software components it has developed (see Figure 5). However, it may be easier and more
efficient to maintain all components on a single company-wide Web server. In either case,
publishing the software component is the responsibility of the component deployer, who has

expertise in system and Web server administration. This expertise is necessary, since, in addition
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to simply placing components on a Web server, the component deployer is responsible for
addressing server configuration issues of component identification and security.

4.2.5 Accessing Components. One of the problems facing a user of a Web-based simulation
system is locating appropriate software components, objects or data, for use in a simulation. A
text-based search engine, similar to those used on the Web today, is one possible method to find
objects and components [9]. However, these tools suffer from the fact that they are oriented
towards HTML documents, rather than objects. A more object-oriented approach is to use naming
and directory services to catalog available simulation objects and components. Using a naming
service, the component deployer associates names with objects, providing the means to look up an
object given its name. CORBA and RMI are examples of distributed object systems that employ
naming services. Directory services extend naming services by adding attributes, making it
possible to search for objects given their attributes. These attributes may be used by the
component deployer to describe and hierarchically organize each component. For example, the
attributes may be specified which describe the component class name, model fidelity and
discipline, model author, or version number, as well as the manufacturer’s name and component
group, to name a few. Queries can be made to the directory service to find and return references to
objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and
NetWare Directory Service (NDS) [23] are examples of directory services which are used today.

Another important responsibility of the component deployer is establishing and maintaining
security policies controlling access to published software components. These components
represent significant investments in both time and money for the manufacturer. To protect their
intellectual property against theft through reverse engineering, it is important to ensure that
relevant data and software components can only be accessed by authorized users. Protection is
accomplished through the use of authentication and authorization mechanisms. Authentication
refers to the presence of an authentication protocol (e.g., password, Kerberos ticket [24],or public
key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle),

while authorization grants access only if the principles identity (credentials) is included in a
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specific list (the access control list), or if the principle can assume a specific role (role-based
authorization). Both authentication and authorization mechanisms are typically included as part of
the naming and directory services, or as part of the Web server services. Using these mechanisms,
the component deployer can control who gains access to the server, and what data can be read.

Communication channels between a client and the Web server are also a source of security
concern. If the communication channel is a dedicated network connection (i.e., intranet or
extranet), security problems are minimized due to physical isolation. If, however, the
communication channel is the Web, physical isolation is impossible, and encryption mechanisms,
such as Secure Socket Layers (SSL) [15], must be used.

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary
component objects, a system integrator, having expertise in system-level engine design. combines
individual component objects to create a first-order engine model. The system-level engine model
is developed using Onyx’s visual assembly interface. Icons, representing individual engine
components (i.e., Elements), are selected from a component browser, dragged into a workspace
window, and interconnected to form a schematic diagram (see Fig. 6).

The component browser, és its name implies, is a tool for browsing the objects and data stored
in a naming or directory service (see bottom-right corner of Fig. 6). Onyx currently supports
access to common naming and directory services, such as NDS, LDAP, CORBA Naming Service
(COS Naming), and RMI Registry, through the Java Naming and Directory Interface (JNDI) [18].
JNDI is an API that provides an abstraction that represents elements common to the most widely
available naming and directory services. JNDI also allows different services to be linked to
together to form a single logical namespace called a federated naming service. Using the
component browser, Onyx users are ale to navigate across multiple naming and directory services
to locate simulation data, objects and components.

For security purposes, the component browser requires users to authenticate themselves before
they can retrieve any information from a naming or directory service. Once authentication has

been successfully completed, the user can browse or search (using attribute keywords) the entire
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namespace (subject to any authorizaﬁon restrictions). Authentication and authorization
capabilities are provided through JNDI and the Java Authentication and Authorization Service
(JAAS) [22] framework. These tools allow the component browser to remain independent from
the underlying security services, which is an important concern when working in a heterogeneous
computing environment such as the Web.

Dragging an icon from the component browser to the workspace window causes the selected
software component to be downloaded from the server to the client machine. Components
comprised entirely of Java classes, such as the Compressor described above, are downloaded from
a Web server to the local file system where the byte-codes are extracted from the JAR file, loaded
into the Java Virtual Machine and instantiated for use in Onyx. Components developed in other
programming languages are not downloaded, but remain on the server. Instead, a proxy object
(stub), representing the component, is downloaded and used to connect to the remote component
using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The need to
use remote components in the aircraft design process is discussed at the end of this section.

Onyx supports the creation of hierarchical component models, and an icon can represent both a
single component or an ass‘embly of components. A component with subcomponents is called a
composite or structured component. Components that are not structured are called primitive
components, since they are typically defined in terms of primitives such as variables and
equations. Composite components are represented by the CompositeElement class, which is
part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design
pattern [13], effectively captures the part-whole hierarchical structure of the component models,
and allows the uniform treatment of both individual objects and compositions of objects. Such
treatment is essential for providing the object interoperability needed to perform Web-based
model construction by composition.

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled
Core is a composite of components which are displayed in the lower schematic. Each icon has one

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between
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the ports on different icons by dragging the mouse. A Connector object having the correct
Transform object needed to connect the two ports is created automatically by Onyx. Each icon
has a popup menu which can be used “customize” the attributes of its Element, Port and
DomainModel objects. When selected, a graphical Customizer object is displayed (see upper-
right corner of Fig. 6), which can be used to view or edit the selected objects attributes. The visual
assembly interface also provides tools for plotting (see the lower-left corner of Fig. 6), editing
files, and browsing on-line documentation. More information on the design and implementation
of the visual assembly interface can be found in ref. [26)].

4.2.7 Engine-Aircraft Model Integration. The system integrator, working with the model and
component authors, performs a series of simulations to evaluate and improve the performance of
the first-order engine model. Component conceptual models are refined and new software
components developed, deployed and integrated, until all preliminary engine design requirements
are satisfied. The engine model is then “passed” to engineers in the aircraft design group for use in
their design process. This is accomplished by publishing the engine model as a
CompositeElement object in the same process as described above, except that the engine
component is deployed on a Web server accessible from networked locations outside the engine
company (1.e., extranet). In the aircraft company, airframe designers use the preliminary engine
component (now a sub-component in the airframe system model) to design the control system,
size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the
engine component and, using the Onyx visual assembly interface, assembles an airframe model
using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig.
6) in a process similar to the one described for the Compressor component. This model can then
be used to simulate gross aircraft performance.

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the
aircraft design teams, the engine component teams continue to refine their designs. The
refinement requires sophisticated models which give a detailed description of the underlying

physical processes within the component. For instance, although the air flow through the

Page 22 of 35



Reed, J.A., Folien. G. J. and Ajjen, A. A.

Compressor might be adequately modeléd as a quasi-one-dimensional, inviscid fluid in early
phases of design, the actual fluid flow is unsteady. three-dimensional (3-D) and characterized by
turbulence, boundarv-layers and shocks. Similarly. at an early stage of design the Compressor
blades can be modeled as rigid, but for more detailed investigations it may be necessary to
account for blade deformation due to material elasticity and thermal loading. Thus, simulating the
behavior of complex components requires the development of a hierarchy of models, or
multimodel, which represent the component at differing levels of abstraction [10]. These models
may include: lumped-parameter models, such as the one used to model the Compressor
component in preliminary design, or distributed parameter models such as fluid dynamics (CFD)
or structural mechanics (FEA). Each model is implemented using a numerical method best suited
to the application; ¢.g., an ordinary differential equation solver (ODE) for state-space models,
finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The
specific numerical method implementation is encapsulated within the model. Figure 2c¢ shows a
multimodel representing the Compressor blade and flowfield at differing levels of fidelity. At the
lowest level of fidelity, both the blade and flowfield are modeled using simple differential
equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical
methods such as finite element analysis or computational fluid dynamics.

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modeling
and simulation is important because it allows designers to selectively refine the fidelity of their
model given the constraints (i.e., level of detail needed, the objective, the available knowledge,
given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models
cannot be deployed in the same manner as the simple models described previously. High-fidelity
CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the
clients Java virtual machine. Even if this were possible, the packages are computationally
intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity
models are deployed as remote objects using distributed object services such as CORBA. This

approach offers several advantages:
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(1) Ability to distribute a computatioﬁally intensive process across a number of processors
(2) Ability to leverage legacy code limited to platforms offering specific programming and/or
operating systems by “wrapping” it in a remote object
(3) Specialization of computer execution environment (i.e., placement of codes on appropriate
computing platforms: such as visualization codes on high-end graphic workstations; com-
putationally intensive codes on supercomputers, etc.).
As with the preliminary component models, the high-fidelity component models can be integrated
into a system-level engine model by the engine system integrator, and used to simulate engine
operation. An engine simulation using a model composed of high-fidelity components would
provide detailed knowledge of the interaction effects between its components. Although these
interactions can be critical to engine performance, they are not currently quantifiable by engine
designers and therefore are unknown until after expensive hardware testing 35, 14]. Evaluation of
these effects will allow engine engineers to make better design decisions earlier in the design
process, before the principle design features have been frozen. Each high-fidelity component
would perform its computations using a wrapped analysis package located on one or more remote
computers. For example, in Fig. 5, the Fan component is run on a supercomputer, while a parallel
software package is used to simulate Compressor operation using a cluster of computers.

The high-fidelity engine model is also a valuable resource to aircraft designers, and once the
model is published, can be used in the aircraft model. The engine model allows aircraft designers
to investigate the flowfield around aircraft nacelle (the cowling structure around the engine) and
fuselage. Detailed descriptions of flow features at the engine exit (e.g.. shocks and expansion
waves), could allow aircraft designers to better predict the drag caused by the jet exhaust flowing
along the aircraft surface. Engine designers would also benefit from a high-fidelity, integrated
engine-aircraft simulation. For example, an integrated simulation could allow engine designers to
study distortions in the airflow entering the engine when the aircraft is at a high angle of attack.
Evaluation of this operating condition is important because distortions can cause the compressor

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would provide
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valuable information which engine and aircraft engineers could use to better and more quickly

design the aircraft.

5 Concluding Remarks

The design of complex systems involves the work of many specialists in various disciplines,
each dependent on the work of other groups. When a single designer or core team is able to
control the entire design process, difficulties in communication and organization are minimized.
However, as design problems become more complex, the number and size of disciplinary groups
increases, and it becomes more difficult for a central group to manage the process. As the design
process becomes more decentralized, communications requirements become more severe. These
difficulties are particularly evident in the design of aircraft, a process that involves complex
analyses, many disciplines, and a large design space [20]. The lack of enabling software
supporting disciplinary analysis by geographically dispersed engineering groups further
aggravates these problems.

In this paper we have argued that Web-based simulation has the potential to improve the
aircraft design process, allowing companies to become more competitive through condensed
cycle times and better products. This improvement is due, in part, to the abilitv of the Web to
support collaborative modeling and distributed model execution in a heterogeneous computing
environment. A central focus of this strategy is the move towards a Web based on digital objects
which can be published and reused to form new models.

Using a component architecture such as the one defined in the Onyx environment, digital
objects can be developed which represent the hierarchical topology of physical systems, making
them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels,
including geometry models, multidisciplinary models and models having multiple levels of
fidelity. Such models are ideal for concurrent design environments, since all of the modeling

information is available in one place. The component architecture class structure provides the

Page 25 of 35



Reed, J.A., Follen, G. J. and Afjeh, A. 4.

capability to wrap existing software- packages. This is extremely important in providing
collaborative and integrative environment for the aircraft design process.

A World-Wide Web populated with digital objects provides the foundation for modeling by
composition. Onyx’s component architecture defines the standard interfaces needed to
dynamically compose new objects and the visual assembly interface makes composition simple
and easy. This promotes model reuse, as well as reducing new model development time.

The Onyx environment supports the distribution of simulation models across the Web. Both
Web-based model distribution (in the case of Java-based models) and distributed services
approaches (e.g., CORBA, COM) are provided. Eacﬁ of these increase Onyx’s usability, as
models can be placed virtually anywhere. The CORBA bindings make it possible to integrate non-
Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it
is portable without modifications to any computing platform which supports the Java Virtual
Machine. Heterogeneous computing support makes the Onyx Web-based simulation system
extremely viable for use in the heterogeneous computing environments typical of aircraft
companies. Most importantly, it allows access to existing legacy codes and access to codes which

must operate on specific architectures or operating systems.
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Figure 1: The Aircraft Design Process. The process
involves conceptual, preliminary and detailed final design
phases. The preliminary design phase includes both major
and minor design loops. In the minor design loop, separate
disciplinary analysis such as aerodynamic, propulsion,
and structural analysis are carried out. Additional
disciplinary analysis, such as controls, loading, stability,
acoustics, etc. have been omitted for clarity. Once a design
is converged upon in the minor loop, it is experimentally
tested in the major design loop. After convergence of the
major design loop, the detailed final design phase is
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(@) Engine is decomposed into separate components, such as the Fan and
Compressor. Component control volumes are defined (b), with behavior
defined by conservation laws. Components are represented in Onyx as
Elements (c), whose Ports are connected by Connectors. Component behavior
is defined by a DomainModel (d) which may apply numerical discretization
methods to solve the conservation equations. Data exchange at control volume
boundaries is passed via Ports and Connectors, with multifidelity and
interdisciplinary mapping handled by Transform objects.
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Figure 4: A portion of the Onyx component architecture class structure.
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Figure 5: Exchange of digital objects in a Web-based simulation environment.
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Figure 6: Overview of Onyx Visual Assembly Interface.
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